Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Oct;80(20):6167–6171. doi: 10.1073/pnas.80.20.6167

Characterization of monoclonal antibodies against mitochondrial F1-ATPase.

M Moradi-Ameli, C Godinot
PMCID: PMC394256  PMID: 6194526

Abstract

Four stable murine hybridoma clones producing homogeneous antibodies against pig heart mitochondrial F1-ATPase have been established. All antibodies exhibit specific binding to F1-ATPase. Three of them interact with the beta subunit and one binds strongly to the alpha and barely to the beta subunit. All of them exhibit linear Scatchard plots and high binding affinities, with dissociation constants between 4.7 X 10(-8) M and 6.5 X 10(-10) M. The minimal number of moles of IgG bound at saturation per mole of immobilized F1-ATPase is 2.2 for the anti-alpha-subunit antibody and 2.5 for one anti-beta-subunit antibody. This suggests that more than two copies of the alpha and beta subunits are present in the enzyme. Two antibodies seem to recognize F1-ATPase equally before or after denaturation with sodium dodecyl sulfate. The two other antibodies exhibited a much higher affinity for the nondissociated enzyme, indicating that they are very sensitive to a specific conformation of the enzyme.

Full text

PDF
6167

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amory A., Foury F., Goffeau A. The purified plasma membrane ATPase of the yeast Schizosaccharomyces pombe forms a phosphorylated intermediate. J Biol Chem. 1980 Oct 10;255(19):9353–9357. [PubMed] [Google Scholar]
  2. Christiansen R. O., Steensland H., Loyter A., Saltzgaber J., Racker E. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation. J Biol Chem. 1969 Aug 25;244(16):4428–4436. [PubMed] [Google Scholar]
  3. Di Pietro A., Godinot C., Bouillant M. L., Gautheron D. C. Pig heart mitochondrial ATPase : properties of purified and membrane-bound enzyme. Effects of flavonoids. Biochimie. 1975;57(8):959–967. doi: 10.1016/s0300-9084(75)80218-5. [DOI] [PubMed] [Google Scholar]
  4. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  5. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  6. Goding J. W. Use of staphylococcal protein A as an immunological reagent. J Immunol Methods. 1978;20:241–253. doi: 10.1016/0022-1759(78)90259-4. [DOI] [PubMed] [Google Scholar]
  7. Kanazawa H., Mabuchi K., Kayano T., Tamura F., Futai M. Nucleotide sequence of genes coding for dicyclohexylcarbodiimide-binding protein and the alpha subunit of proton-translocating ATPase of Escherichia coli. Biochem Biophys Res Commun. 1981 May 15;100(1):219–225. doi: 10.1016/s0006-291x(81)80085-x. [DOI] [PubMed] [Google Scholar]
  8. Kennel S. J. Binding of monoclonal antibody to protein antigen in fluid phase or bound to solid supports. J Immunol Methods. 1982 Nov 26;55(1):1–12. doi: 10.1016/0022-1759(82)90070-9. [DOI] [PubMed] [Google Scholar]
  9. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Ludwig B., Prochaska L., Capaldi R. A. Arrangement of oligomycin-sensitive adenosine triphosphatase in the mitochondrial inner membrane. Biochemistry. 1980 Apr 1;19(7):1516–1523. doi: 10.1021/bi00548a039. [DOI] [PubMed] [Google Scholar]
  13. Mollinedo F., Larraga V., Coll F. J., Muñoz E. Role of the subunits of the energy-transducing adenosine triphosphatase from Micrococcus lysodeikticus membranes studied by proteolytic digestion and immunological approaches. Biochem J. 1980 Mar 15;186(3):713–723. doi: 10.1042/bj1860713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nelson N., Deters D. W., Nelson H., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. 8. Properties of isolated subunits of coupling factor 1 from spinach chloroplasts. J Biol Chem. 1973 Mar 25;248(6):2049–2055. [PubMed] [Google Scholar]
  15. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  16. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  17. Penin F., Godinot C., Gautheron D. C. Optimization of the purification of mitochondrial F1-adenosine triphosphatase. Biochim Biophys Acta. 1979 Oct 10;548(1):63–71. doi: 10.1016/0005-2728(79)90187-7. [DOI] [PubMed] [Google Scholar]
  18. Rott R., Nelson N. Purification and immunological properties of proton-ATPase complexes from yeast and rat liver mitochondria. J Biol Chem. 1981 Sep 10;256(17):9224–9228. [PubMed] [Google Scholar]
  19. Saraste M., Gay N. J., Eberle A., Runswick M. J., Walker J. E. The atp operon: nucleotide sequence of the genes for the gamma, beta, and epsilon subunits of Escherichia coli ATP synthase. Nucleic Acids Res. 1981 Oct 24;9(20):5287–5296. doi: 10.1093/nar/9.20.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith J. B., Sternweis P. C. Subunit specific antisera to the Escherichia coli ATP synthase: effects on ATPase activity, energy transduction, and enzyme assembly. Arch Biochem Biophys. 1982 Aug;217(1):376–387. doi: 10.1016/0003-9861(82)90514-8. [DOI] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES