Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Oct;80(20):6202–6205. doi: 10.1073/pnas.80.20.6202

A pteroylpolyglutamate binds to tetramers in deoxyhemoglobin but to dimers in oxyhemoglobin.

R E Benesch, R Benesch, S Kwong, C M Baugh
PMCID: PMC394263  PMID: 6578504

Abstract

The binding of a physiological concentration of pteroylhepta(glutamate) to oxy- and deoxyhemoglobin in large excess was measured by ultrafiltration. The variation of free to bound folate with hemoglobin concentration showed that a single molecule of the pteroylpolyglutamate is bound by deoxyhemoglobin tetramers and by alpha beta dimers in oxyhemoglobin. Although the binding sites are different, the affinity constants are the same and very similar to the 2,3-bisphosphoglycerate binding energy. Nevertheless, in view of the small proportion of dimers in oxyhemoglobin much more pteroylhepta(glutamate) is bound by deoxyhemoglobin over a wide range of hemoglobin concentrations. Because even 2% deoxyhemoglobin is enough to bind all of the erythrocyte folate as polyglutamate, the bulk of it will be bound at physiological oxygen pressures. Free folate could only be expected in fully oxygenated erythrocytes. Therefore, the reaction of pteroylpolyglutamates with hemoglobin represents an oxygenation-dependent storage mechanism that can account for the 40-fold excess of the vitamin in the erythrocyte over the amounts in the serum. Because methotrexate is also converted to polyglutamate derivatives in the erythrocyte, this drug is likely to be concentrated and stored there by the same mechanism.

Full text

PDF
6202

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. C., Reese A., Stallings M., Huisman T. H. Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaC1 developers. Hemoglobin. 1976;1(1):27–44. doi: 10.3109/03630267609031020. [DOI] [PubMed] [Google Scholar]
  2. Arnone A., Benesch R. E., Benesch R. Structure of human deoxyhemoglobin specifically modified with pyridoxal compounds. J Mol Biol. 1977 Oct 5;115(4):627–642. doi: 10.1016/0022-2836(77)90107-3. [DOI] [PubMed] [Google Scholar]
  3. Arnone A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature. 1972 May 19;237(5351):146–149. doi: 10.1038/237146a0. [DOI] [PubMed] [Google Scholar]
  4. Benesch R. E., Benesch R., Renthal R. D., Maeda N. Affinity labeling of the polyphosphate binding site of hemoglobin. Biochemistry. 1972 Sep 12;11(19):3576–3582. doi: 10.1021/bi00769a013. [DOI] [PubMed] [Google Scholar]
  5. Benesch R. E., Benesch R., Renthal R., Gratzer W. B. Cofactor binding and oxygen equilibria in haemoglobin. Nat New Biol. 1971 Dec 8;234(49):174–176. doi: 10.1038/newbio234174a0. [DOI] [PubMed] [Google Scholar]
  6. Benesch R. E., Benesch R. The mechanism of interaction of red cell organic phosphates with hemoglobin. Adv Protein Chem. 1974;28:211–237. doi: 10.1016/s0065-3233(08)60231-4. [DOI] [PubMed] [Google Scholar]
  7. Benesch R. E., Ikeda S., Benesch R. Reaction of haptoglobin with hemoglobin covalently cross-linked between the alpha beta dimers. J Biol Chem. 1976 Jan 25;251(2):465–470. [PubMed] [Google Scholar]
  8. Benesch R., Benesch R. E. Preparation and properties of hemoglobin modified with derivatives of pyridoxal. Methods Enzymol. 1981;76:147–159. doi: 10.1016/0076-6879(81)76123-8. [DOI] [PubMed] [Google Scholar]
  9. Benesch R., Waxman S., Benesch R., Baugh C. The binding of folyl polyglutamates by hemoglobin. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1359–1363. doi: 10.1016/0006-291x(82)91263-3. [DOI] [PubMed] [Google Scholar]
  10. Berman M., Benesch R., Benesch R. E. The removal of organic phosphates from hemoglobin. Arch Biochem Biophys. 1971 Jul;145(1):236–239. doi: 10.1016/0003-9861(71)90031-2. [DOI] [PubMed] [Google Scholar]
  11. Bunn H. F., Briehl R. W. The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J Clin Invest. 1970 Jun;49(6):1088–1095. doi: 10.1172/JCI106324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chu A. H., Ackers G. K. Mutual effects of protons, NaCl, and oxygen on the dimer-tetramer assembly of human hemoglobin. The dimer Bohr effect. J Biol Chem. 1981 Feb 10;256(3):1199–1205. [PubMed] [Google Scholar]
  13. Cichowicz D. J., Foo S. K., Shane B. Folylpoly-gamma-glutamate synthesis by bacteria and mammalian cells. Mol Cell Biochem. 1981 Sep 25;39:209–228. doi: 10.1007/BF00232575. [DOI] [PubMed] [Google Scholar]
  14. Cohen-Dix P., Noble R. W., Reichlin M. Comparative binding studies of the hemoglobin-haptoglobin and the hemoglobin-antihemoglobin reactions. Biochemistry. 1973 Sep 11;12(19):3744–3751. doi: 10.1021/bi00743a025. [DOI] [PubMed] [Google Scholar]
  15. Cooper B. A., Peyman J. Folic acid and its pentaglutamate leak from human erythrocyte ghosts but not from liposomes. Biochim Biophys Acta. 1982 Oct 22;692(1):161–164. doi: 10.1016/0005-2736(82)90514-4. [DOI] [PubMed] [Google Scholar]
  16. Corrocher R., Hoffbrand A. V. Subcellular localization of folate and effect of methotrexate on the incorporation of radioactive folic acid into guinea-pig liver folate. Clin Sci. 1972 Dec;43(6):812–822. [PubMed] [Google Scholar]
  17. Curthoys N. P., Rabinowitz J. C. Formyltetrahydrofolate synthetase. Binding of folate substrates and kinetics of the reverse reaction. J Biol Chem. 1972 Apr 10;247(7):1965–1971. [PubMed] [Google Scholar]
  18. Edelstein S. J., Rehmar M. J., Olson J. S., Gibson Q. H. Functional aspects of the subunit association-dissociation equilibria of hemoglobin. J Biol Chem. 1970 Sep 10;245(17):4372–4381. [PubMed] [Google Scholar]
  19. Gray R. D., Dean W. L. Zn(II)-induced dimerization of human carbonmonoxy hemoglobin. Arch Biochem Biophys. 1982 Aug;217(1):202–204. doi: 10.1016/0003-9861(82)90494-5. [DOI] [PubMed] [Google Scholar]
  20. Gray R. D. The effect of H+, inositol hexaphosphate, and Zn(II) on the tetramer-dimer equilibrium of liganded hemoglobin. J Biol Chem. 1980 Mar 10;255(5):1812–1818. [PubMed] [Google Scholar]
  21. HERBERT V., LARRABEE A. R., BUCHANAN J. M. Studies on the identification of a folate compound of human serum. J Clin Invest. 1962 May;41:1134–1138. doi: 10.1172/JCI104565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hamasaki N., Rose Z. B. The binding of phosphorylated red cell metabolites to human hemoglobin A. J Biol Chem. 1974 Dec 25;249(24):7896–7901. [PubMed] [Google Scholar]
  23. Hensley P., Moffat K., Edelstein S. J. Influence of inositol hexaphosphate binding on subunit dissociation in methemoglobin. J Biol Chem. 1975 Dec 25;250(24):9391–9396. [PubMed] [Google Scholar]
  24. Hoffbrand A. V., Newcombe F. A., Mollin D. L. Method of assay of red cell folate activity and the value of the assay as a test for folate deficiency. J Clin Pathol. 1966 Jan;19(1):17–28. doi: 10.1136/jcp.19.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hwang P. K., Greer J. Interaction between hemoglobin subunits in the hemoglobin . haptoglobin complex. J Biol Chem. 1980 Apr 10;255(7):3038–3041. [PubMed] [Google Scholar]
  26. Kozloff L. M., Crosby L. K., Baugh C. M. Structural role of the polyglutamate portion of the folate found in T4D bacteriophage baseplate. J Virol. 1979 Nov;32(2):497–506. doi: 10.1128/jvi.32.2.497-506.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kozloff L. M., Lute M. Folic acid, a structural component of T4 bacteriophage. J Mol Biol. 1965 Jul;12(3):780–792. doi: 10.1016/s0022-2836(65)80327-8. [DOI] [PubMed] [Google Scholar]
  28. Krumdieck C. L., Baugh C. M. The solid-phase synthesis of polyglutamates of folic acid. Biochemistry. 1969 Apr;8(4):1568–1572. doi: 10.1021/bi00832a036. [DOI] [PubMed] [Google Scholar]
  29. Leslie G. I., Baugh C. M. The uptake of pteroyl(14-C)glutamic acid into rat liver and its incorporation into the natural pteroyl poly-gamma-glutamates of that organ. Biochemistry. 1974 Nov 19;13(24):4957–4961. doi: 10.1021/bi00721a013. [DOI] [PubMed] [Google Scholar]
  30. Makinen M. W., Milstien J. B., Kon H. Specificity of interaction of haptoglobin with mammalian hemoglobin. Biochemistry. 1972 Oct 10;11(21):3851–3860. doi: 10.1021/bi00771a004. [DOI] [PubMed] [Google Scholar]
  31. Minton A. P. Thermodynamic nonideality and the dependence of partition coefficient upon solute concentration in exclusion chromatography. Application to self-associating and non-self-associating solutes. Application to hemoglobin. Biophys Chem. 1980 Dec;12(3-4):271–277. doi: 10.1016/0301-4622(80)80004-4. [DOI] [PubMed] [Google Scholar]
  32. NORONHA J. M., ABOOBAKER V. S. Studies on the folate compounds of human blood. Arch Biochem Biophys. 1963 Jun;101:445–447. doi: 10.1016/0003-9861(63)90501-0. [DOI] [PubMed] [Google Scholar]
  33. Nagel R. L., Gibson Q. H. The hemoglobin-haptoglobin reaction as a probe of hemoglobin conformation. Biochem Biophys Res Commun. 1972 Aug 21;48(4):959–966. doi: 10.1016/0006-291x(72)90702-4. [DOI] [PubMed] [Google Scholar]
  34. Peacock A. C., Pastewka J. V., Reed R. A., Ness A. T. Haptoglobin--hemoglobin interaction. Stoichiometry. Biochemistry. 1970 May 26;9(11):2275–2279. doi: 10.1021/bi00813a008. [DOI] [PubMed] [Google Scholar]
  35. Perry J., Chanarin I. Abnormal folate polyglutamate ratios in untreated pernicious anaemia corrected by therapy. Br J Haematol. 1977 Mar;35(3):397–402. doi: 10.1111/j.1365-2141.1977.tb00599.x. [DOI] [PubMed] [Google Scholar]
  36. Scott J. M., Weir D. G. Folate composition, synthesis and function in natural materials. Clin Haematol. 1976 Oct;5(3):547–568. [PubMed] [Google Scholar]
  37. Shin Y. S., Buehring K. U., Stokstad E. L. Studies of folate compounds in nature. Folate compounds in rat kidney and red blood cells. Arch Biochem Biophys. 1974 Jul;163(1):211–224. doi: 10.1016/0003-9861(74)90471-8. [DOI] [PubMed] [Google Scholar]
  38. White S. L. Titration of the carboxyhemoglobin tetramer-dimer equilibrium by inositol hexaphosphate. J Biol Chem. 1976 Aug 10;251(15):4763–4769. [PubMed] [Google Scholar]
  39. da Costa M., Iqbal M. P. The transport and accumulation of methotrexate in human erythrocytes. Cancer. 1981 Dec 1;48(11):2427–2432. doi: 10.1002/1097-0142(19811201)48:11<2427::aid-cncr2820481115>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES