Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Oct;80(20):6426–6428. doi: 10.1073/pnas.80.20.6426

pH regulation of divalent/monovalent Ca/K cation transport selectivity by a macrocyclic carrier molecule.

A Hriciga, J M Lehn
PMCID: PMC394311  PMID: 6312458

Abstract

The lipophilic dicarboxylic acid-dicarboxamide macrocycle 1 is an efficient carrier for calcium and potassium transport through a liquid membrane. The process involves competitive Ca2+/K+ symport coupled to proton antiport in a pH gradient. It presents a very pronounced phenomenon of pH regulation of transport selectivity from preferential K+ transport to preferential Ca2+ transport as the pH increases from 2 to 9 in the starting aqueous phase containing the metal ions. The results demonstrate how carrier design allows control of the rate and selectivity of divalent/monovalent M2+/M+ cation transport.

Full text

PDF
6426

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anjaneyulu K., Anjaneyulu R., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XLIII. Na-Ca countertransport mediated by pancreatic islet native ionophores. J Inorg Biochem. 1980 Oct;13(2):179–188. doi: 10.1016/s0162-0134(00)80120-8. [DOI] [PubMed] [Google Scholar]
  2. Ashton R., Steinrauf L. K. Thermodynamic consideration of the ion transporting antibiotics. J Mol Biol. 1970 May 14;49(3):547–556. doi: 10.1016/0022-2836(70)90280-9. [DOI] [PubMed] [Google Scholar]
  3. Blaustein M. P., Russell J. M. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membr Biol. 1975 Jul 24;22(3-4):285–312. doi: 10.1007/BF01868176. [DOI] [PubMed] [Google Scholar]
  4. Caswell A. H., Pressman B. C. Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. Biochem Biophys Res Commun. 1972 Oct 6;49(1):292–298. doi: 10.1016/0006-291x(72)90043-5. [DOI] [PubMed] [Google Scholar]
  5. Deber C. M., Young M. E., Tom-Kun J. Synthetic cation transport peptides: calcium transport across phospholipid membranes. Biochemistry. 1980 Dec 23;19(26):6194–6198. doi: 10.1021/bi00567a038. [DOI] [PubMed] [Google Scholar]
  6. Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature. 1981 Jul 16;292(5820):201–204. doi: 10.1038/292201a0. [DOI] [PubMed] [Google Scholar]
  7. Malaisse W. J., Couturier E. Ionophoretic model for Na-Ca counter transport. Nature. 1978 Oct 19;275(5681):664–665. doi: 10.1038/275664a0. [DOI] [PubMed] [Google Scholar]
  8. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  9. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES