Abstract
The yeast Schwanniomyces occidentalis has a high-affinity K+ uptake system with a high concentrative capacity, which is able to deplete the external K+ to < 0.03 microM. We have cloned the gene HAK1 of S.occidentalis which complements defective K+ uptake by trk1 and trk1 trk2 mutants of Saccharomyces cerevisiae. When HAK1 was expressed in a trk1 trk2 S.cerevisiae mutant, transport affinities for K+ and other alkali cations resembled those of S.occidentalis. The predicted amino acid sequence of the HAK1 protein shows significant homology with the hydrophobic region of the Kup transporter of Escherichia coli. In S.occidentalis HAK1 expresses in K(+)-limiting conditions. Our data indicate that in K(+)-starved cells the system encoded by HAK1 is the major K+ transporter of S.occidentalis.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alijo R., Ramos J. Several routes of activation of the potassium uptake system of yeast. Biochim Biophys Acta. 1993 Nov 7;1179(2):224–228. doi: 10.1016/0167-4889(93)90145-f. [DOI] [PubMed] [Google Scholar]
- Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benlloch M., Moreno I., Rodríguez-Navarro A. Two modes of rubidium uptake in sunflower plants. Plant Physiol. 1989 Jul;90(3):939–942. doi: 10.1104/pp.90.3.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatt M. R., Rodriguez-Navarro A., Slayman C. L. Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential. J Membr Biol. 1987;98(2):169–189. doi: 10.1007/BF01872129. [DOI] [PubMed] [Google Scholar]
- Bossemeyer D., Schlösser A., Bakker E. P. Specific cesium transport via the Escherichia coli Kup (TrkD) K+ uptake system. J Bacteriol. 1989 Apr;171(4):2219–2221. doi: 10.1128/jb.171.4.2219-2221.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
- Claros M. G., Abarca D., Fernández-Lobato M., Jiménez A. Molecular structure of the SWA2 gene encoding an AMY1-related alpha-amylase from Schwanniomyces occidentalis. Curr Genet. 1993 Jul-Aug;24(1-2):75–83. doi: 10.1007/BF00324668. [DOI] [PubMed] [Google Scholar]
- Deibel M. R., Jr, Hiebsch R. R., Klein R. D. Secreted amylolytic enzymes from Schwanniomyces occidentalis: purification by fast protein liquid chromatography (FPLC) and preliminary characterization. Prep Biochem. 1988;18(1):77–120. doi: 10.1080/00327488808062514. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dosch D. C., Helmer G. L., Sutton S. H., Salvacion F. F., Epstein W. Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. J Bacteriol. 1991 Jan;173(2):687–696. doi: 10.1128/jb.173.2.687-696.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Fernando M., Mehroke J., Glass A. D. De Novo Synthesis of Plasma Membrane and Tonoplast Polypeptides of Barley Roots during Short-Term K Deprivation : In Search of the High-Affinity K Transport System. Plant Physiol. 1992 Nov;100(3):1269–1276. doi: 10.1104/pp.100.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaber R. F., Styles C. A., Fink G. R. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2848–2859. doi: 10.1128/mcb.8.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins C. F., Hiles I. D., Salmond G. P., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986 Oct 2;323(6087):448–450. doi: 10.1038/323448a0. [DOI] [PubMed] [Google Scholar]
- Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
- Klein R. D., Favreau M. A. Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis. J Bacteriol. 1988 Dec;170(12):5572–5578. doi: 10.1128/jb.170.12.5572-5578.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein R. D., Poorman R. A., Favreau M. A., Shea M. H., Hatzenbuhler N. T., Nulf S. C. Cloning and sequence analysis of the gene encoding invertase from the yeast Schwanniomyces occidentalis. Curr Genet. 1989 Sep;16(3):145–152. doi: 10.1007/BF00391470. [DOI] [PubMed] [Google Scholar]
- Klein R. D., Roof L. L. Cloning of the orotidine 5'-phosphate decarboxylase (ODC) gene of Schwanniomyces occidentalis by complementation of the ura3 mutation in S. cerevisiae. Curr Genet. 1988;13(1):29–35. doi: 10.1007/BF00365753. [DOI] [PubMed] [Google Scholar]
- Ko C. H., Gaber R. F. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Aug;11(8):4266–4273. doi: 10.1128/mcb.11.8.4266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kochian L. V., Shaff J. E., Lucas W. J. High affinity k uptake in maize roots: a lack of coupling with h efflux. Plant Physiol. 1989 Nov;91(3):1202–1211. doi: 10.1104/pp.91.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Maathuis F. J., Sanders D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9272–9276. doi: 10.1073/pnas.91.20.9272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCulloch S. R., Beilby M. J., Walker N. A. Transport of potassium in Chara australis: II. Kinetics of a symport with sodium. J Membr Biol. 1990 May;115(2):129–143. doi: 10.1007/BF01869452. [DOI] [PubMed] [Google Scholar]
- Ramos J., Alijo R., Haro R., Rodriguez-Navarro A. TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J Bacteriol. 1994 Jan;176(1):249–252. doi: 10.1128/jb.176.1.249-252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos J., Haro R., Alijo R., Rodríguez-Navarro A. Activation of the potassium uptake system during fermentation in Saccharomyces cerevisiae. J Bacteriol. 1992 Mar;174(6):2025–2027. doi: 10.1128/jb.174.6.2025-2027.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos J., Haro R., Rodríguez-Navarro A. Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta. 1990 Nov 16;1029(2):211–217. doi: 10.1016/0005-2736(90)90156-i. [DOI] [PubMed] [Google Scholar]
- Ramos J., Rodríguez-Navarro A. Regulation and interconversion of the potassium transport systems of Saccharomyces cerevisiae as revealed by rubidium transport. Eur J Biochem. 1986 Jan 15;154(2):307–311. doi: 10.1111/j.1432-1033.1986.tb09398.x. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Navarro A., Blatt M. R., Slayman C. L. A potassium-proton symport in Neurospora crassa. J Gen Physiol. 1986 May;87(5):649–674. doi: 10.1085/jgp.87.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodríguez-Navarro A., Ramos J. Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol. 1984 Sep;159(3):940–945. doi: 10.1128/jb.159.3.940-945.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992 Dec 4;258(5088):1654–1658. doi: 10.1126/science.8966547. [DOI] [PubMed] [Google Scholar]
- Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]
- Schleyer M., Bakker E. P. Nucleotide sequence and 3'-end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol. 1993 Nov;175(21):6925–6931. doi: 10.1128/jb.175.21.6925-6931.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder J. I., Ward J. M., Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct. 1994;23:441–471. doi: 10.1146/annurev.bb.23.060194.002301. [DOI] [PubMed] [Google Scholar]
- Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
- Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]



