Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1995 Jul 3;14(13):3247–3251. doi: 10.1002/j.1460-2075.1995.tb07327.x

Enhancement of Neurospora VS ribozyme cleavage by tuberactinomycin antibiotics.

J E Olive 1, D M De Abreu 1, T Rastogi 1, A A Andersen 1, A K Mittermaier 1, T L Beattie 1, R A Collins 1
PMCID: PMC394386  PMID: 7621836

Abstract

Several examples of inhibition of the function of a ribozyme or RNA-protein complex have shown that certain antibiotics can interact specifically with RNA. There are, however, few examples of antibiotics that have a positive, rather than a negative, effect on the function of an RNA. We have found that micromolar concentrations of viomycin, a basic, cyclic peptide antibiotic of the tuberactinomycin group, enhance the cleavage of a ribozyme derived from Neurospora VS RNA. Viomycin decreases by an order of magnitude the concentration of magnesium required for cleavage. It also stimulates an otherwise insignificant transcleavage reaction by enhancing interactions between RNA molecules. The ability of viomycin to enhance some RNA-mediated reactions but inhibit others, including translation and Group I intron splicing, demonstrates the potential for natural selection by small molecules during evolution in the 'RNA world' and may have broader implications with respect to ribozyme expression and activity in contemporary cells.

Full text

PDF
3247

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Ribonuclease P. Postscript. J Biol Chem. 1990 Nov 25;265(33):20053–20056. [PubMed] [Google Scholar]
  2. Beattie T. L., Olive J. E., Collins R. A. A secondary-structure model for the self-cleaving region of Neurospora VS RNA. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4686–4690. doi: 10.1073/pnas.92.10.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertrand E. L., Rossi J. J. Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear ribonucleoprotein A1. EMBO J. 1994 Jun 15;13(12):2904–2912. doi: 10.1002/j.1460-2075.1994.tb06585.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castanotto D., Rossi J. J., Deshler J. O. Biological and functional aspects of catalytic RNAs. Crit Rev Eukaryot Gene Expr. 1992;2(4):331–357. [PubMed] [Google Scholar]
  5. Coetzee T., Herschlag D., Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 1994 Jul 1;8(13):1575–1588. doi: 10.1101/gad.8.13.1575. [DOI] [PubMed] [Google Scholar]
  6. Collins R. A., Olive J. E. Reaction conditions and kinetics of self-cleavage of a ribozyme derived from Neurospora VS RNA. Biochemistry. 1993 Mar 23;32(11):2795–2799. doi: 10.1021/bi00062a009. [DOI] [PubMed] [Google Scholar]
  7. Dahm S. C., Uhlenbeck O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 1991 Oct 1;30(39):9464–9469. doi: 10.1021/bi00103a011. [DOI] [PubMed] [Google Scholar]
  8. Davies J., von Ahsen U., Wank H., Schroeder R. Evolution of secondary metabolite production: potential roles for antibiotics as prebiotic effectors of catalytic RNA reactions. Ciba Found Symp. 1992;171:24–44. doi: 10.1002/9780470514344.ch3. [DOI] [PubMed] [Google Scholar]
  9. Forster A. C., Davies C., Sheldon C. C., Jeffries A. C., Symons R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature. 1988 Jul 21;334(6179):265–267. doi: 10.1038/334265a0. [DOI] [PubMed] [Google Scholar]
  10. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  11. Guo H. C., De Abreu D. M., Tillier E. R., Saville B. J., Olive J. E., Collins R. A. Nucleotide sequence requirements for self-cleavage of Neurospora VS RNA. J Mol Biol. 1993 Jul 20;232(2):351–361. doi: 10.1006/jmbi.1993.1395. [DOI] [PubMed] [Google Scholar]
  12. Herschlag D., Khosla M., Tsuchihashi Z., Karpel R. L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 1994 Jun 15;13(12):2913–2924. doi: 10.1002/j.1460-2075.1994.tb06586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joseph S., Burke J. M. Optimization of an anti-HIV hairpin ribozyme by in vitro selection. J Biol Chem. 1993 Nov 25;268(33):24515–24518. [PubMed] [Google Scholar]
  14. Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982 Nov;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7. [DOI] [PubMed] [Google Scholar]
  15. Liou Y. F., Tanaka N. Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun. 1976 Jul 26;71(2):477–483. doi: 10.1016/0006-291x(76)90812-3. [DOI] [PubMed] [Google Scholar]
  16. Moazed D., Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie. 1987 Aug;69(8):879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
  17. Modolell J., Vázquez The inhibition of ribosomal translocation by viomycin. Eur J Biochem. 1977 Dec;81(3):491–497. doi: 10.1111/j.1432-1033.1977.tb11974.x. [DOI] [PubMed] [Google Scholar]
  18. Orgel L. E., Crick F. H. Anticipating an RNA world. Some past speculations on the origin of life: where are they today? FASEB J. 1993 Jan;7(1):238–239. doi: 10.1096/fasebj.7.1.7678564. [DOI] [PubMed] [Google Scholar]
  19. Pace N. R., Smith D. Ribonuclease P: function and variation. J Biol Chem. 1990 Mar 5;265(7):3587–3590. [PubMed] [Google Scholar]
  20. Portman D. S., Dreyfuss G. RNA annealing activities in HeLa nuclei. EMBO J. 1994 Jan 1;13(1):213–221. doi: 10.1002/j.1460-2075.1994.tb06251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saville B. J., Collins R. A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. 1990 May 18;61(4):685–696. doi: 10.1016/0092-8674(90)90480-3. [DOI] [PubMed] [Google Scholar]
  22. Schroeder R., Streicher B., Wank H. Splice-site selection and decoding: are they related? Science. 1993 Jun 4;260(5113):1443–1444. doi: 10.1126/science.8502988. [DOI] [PubMed] [Google Scholar]
  23. Stage T. K., Hertel K. J., Uhlenbeck O. C. Inhibition of the hammerhead ribozyme by neomycin. RNA. 1995 Mar;1(1):95–101. [PMC free article] [PubMed] [Google Scholar]
  24. Suh Y. A., Kumar P. K., Taira K., Nishikawa S. Self-cleavage activity of the genomic HDV ribozyme in the presence of various divalent metal ions. Nucleic Acids Res. 1993 Jul 11;21(14):3277–3280. doi: 10.1093/nar/21.14.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsuchihashi Z., Khosla M., Herschlag D. Protein enhancement of hammerhead ribozyme catalysis. Science. 1993 Oct 1;262(5130):99–102. doi: 10.1126/science.7692597. [DOI] [PubMed] [Google Scholar]
  26. Wank H., Rogers J., Davies J., Schroeder R. Peptide antibiotics of the tuberactinomycin family as inhibitors of group I intron RNA splicing. J Mol Biol. 1994 Mar 4;236(4):1001–1010. doi: 10.1016/0022-2836(94)90007-8. [DOI] [PubMed] [Google Scholar]
  27. Yamada T., Bierhaus K. H. Viomycin favours the formation of 70S ribosome couples. Mol Gen Genet. 1978 May 31;161(3):261–265. doi: 10.1007/BF00330999. [DOI] [PubMed] [Google Scholar]
  28. Yamada T., Mizugichi Y., Nierhaus K. H., Wittmann H. G. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature. 1978 Oct 5;275(5679):460–461. doi: 10.1038/275460a0. [DOI] [PubMed] [Google Scholar]
  29. Yamada T., Teshima T., Shiba T., Nierhaus K. H. The translocation inhibitor tuberactinomycin binds to nucleic acids and blocks the in vitro assembly of 50S subunits. Nucleic Acids Res. 1980 Dec 11;8(23):5767–5777. doi: 10.1093/nar/8.23.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. doi: 10.1126/science.3381099. [DOI] [PubMed] [Google Scholar]
  31. Zapp M. L., Stern S., Green M. R. Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell. 1993 Sep 24;74(6):969–978. doi: 10.1016/0092-8674(93)90720-b. [DOI] [PubMed] [Google Scholar]
  32. von Ahsen U., Davies J., Schroeder R. Antibiotic inhibition of group I ribozyme function. Nature. 1991 Sep 26;353(6342):368–370. doi: 10.1038/353368a0. [DOI] [PubMed] [Google Scholar]
  33. von Ahsen U., Noller H. F. Footprinting the sites of interaction of antibiotics with catalytic group I intron RNA. Science. 1993 Jun 4;260(5113):1500–1503. doi: 10.1126/science.8502993. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES