Abstract
Carnitine acetyltransferase (CAT) is present in mitochondria and peroxisomes of oleate-grown Saccharomyces cerevisiae. Both proteins are encoded by the same gene, YCAT, which encodes a protein with a mitochondrial targeting signal (MTS) at the N-terminus, and a peroxisomal targeting signal type 1 (PTS-1) at the C-terminus. Deletion of both motifs revealed the presence of an additional internal targeting sequence. Import of CAT via this internal signal was shown to be dependent on PAS10, a protein which is required for the import of PTS-1 containing proteins. An interaction of PAS10 with this internal targeting signal was demonstrated using the yeast two-hybrid technique. Expression of the YCAT gene behind a heterologous promoter resulted in loss of peroxisomal targeting, indicating that differential targeting is controlled at transcriptional or translational level. Determination of the 5'-ends of YCAT mRNAs revealed that YCAT transcripts initiating after the first AUG were present in oleate-grown cells. These transcripts were virtually absent in acetate- or glycerol-grown cells. We propose that in response to oleate, shorter transcripts are produced from which the peroxisomal form of CAT is translated, resulting in a CAT protein without a MTS, which can be targeted to peroxisomes.
Full text
PDF![3472](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/40451dab9c82/emboj00038-0194.png)
![3473](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/dd9969225526/emboj00038-0195.png)
![3474](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/a539aaaad227/emboj00038-0196.png)
![3475](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/acc1f29a605b/emboj00038-0197.png)
![3476](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/4235227f744f/emboj00038-0198.png)
![3477](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/1f414b2b1160/emboj00038-0199.png)
![3478](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/f13f3d68cc9f/emboj00038-0200.png)
![3479](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6b/394414/4910b64898b0/emboj00038-0201.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atomi H., Ueda M., Suzuki J., Kamada Y., Tanaka A. Presence of carnitine acetyltransferase in peroxisomes and in mitochondria of oleic acid-grown Saccharomyces cerevisiae. FEMS Microbiol Lett. 1993 Aug 15;112(1):31–34. doi: 10.1111/j.1574-6968.1993.tb06419.x. [DOI] [PubMed] [Google Scholar]
- Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
- Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
- Elgersma Y., van den Berg M., Tabak H. F., Distel B. An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Genetics. 1993 Nov;135(3):731–740. doi: 10.1093/genetics/135.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
- Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawamoto S., Nozaki C., Tanaka A., Fukui S. Fatty acid beta-oxidation system in microbodies of n-alkane-grown Candida tropicalis. Eur J Biochem. 1978 Feb;83(2):609–613. doi: 10.1111/j.1432-1033.1978.tb12130.x. [DOI] [PubMed] [Google Scholar]
- Kawamoto S., Ueda M., Nozaki C., Yamamura M., Tanaka A., Fukui S. Localization of carnitine acetyltransferase in peroxisomes and in mitochondria of n-alkane-grown Candida tropicalis. FEBS Lett. 1978 Dec 1;96(1):37–40. doi: 10.1016/0014-5793(78)81057-6. [DOI] [PubMed] [Google Scholar]
- Kispal G., Sumegi B., Dietmeier K., Bock I., Gajdos G., Tomcsanyi T., Sandor A. Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. Use of the cDNA in gene disruption studies. J Biol Chem. 1993 Jan 25;268(3):1824–1829. [PubMed] [Google Scholar]
- Kragler F., Langeder A., Raupachova J., Binder M., Hartig A. Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae. J Cell Biol. 1993 Feb;120(3):665–673. doi: 10.1083/jcb.120.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunau W. H., Bühne S., de la Garza M., Kionka C., Mateblowski M., Schultz-Borchard U., Thieringer R. Comparative enzymology of beta-oxidation. Biochem Soc Trans. 1988 Jun;16(3):418–420. doi: 10.1042/bst0160418. [DOI] [PubMed] [Google Scholar]
- Marzioch M., Erdmann R., Veenhuis M., Kunau W. H. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 1994 Oct 17;13(20):4908–4918. doi: 10.1002/j.1460-2075.1994.tb06818.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazawa S., Ozasa H., Furuta S., Osumi T., Hashimoto T., Miura S., Mori M., Tatibana M. Biosynthesis and turnover of carnitine acetyltransferase in rat liver. J Biochem. 1983 Feb;93(2):453–459. doi: 10.1093/oxfordjournals.jbchem.a134199. [DOI] [PubMed] [Google Scholar]
- Miyazawa S., Ozasa H., Furuta S., Osumi T., Hashimoto T. Purification and properties of carnitine acetyltransferase from rat liver. J Biochem. 1983 Feb;93(2):439–451. doi: 10.1093/oxfordjournals.jbchem.a134198. [DOI] [PubMed] [Google Scholar]
- Munujos P., Coll-Cantí J., González-Sastre F., Gella F. J. Assay of succinate dehydrogenase activity by a colorimetric-continuous method using iodonitrotetrazolium chloride as electron acceptor. Anal Biochem. 1993 Aug 1;212(2):506–509. doi: 10.1006/abio.1993.1360. [DOI] [PubMed] [Google Scholar]
- Oda T., Funai T., Ichiyama A. Generation from a single gene of two mRNAs that encode the mitochondrial and peroxisomal serine:pyruvate aminotransferase of rat liver. J Biol Chem. 1990 May 5;265(13):7513–7519. [PubMed] [Google Scholar]
- Purdue P. E., Lumb M. J., Danpure C. J. Molecular evolution of alanine/glyoxylate aminotransferase 1 intracellular targeting. Analysis of the marmoset and rabbit genes. Eur J Biochem. 1992 Jul 15;207(2):757–766. doi: 10.1111/j.1432-1033.1992.tb17106.x. [DOI] [PubMed] [Google Scholar]
- Schmalix W., Bandlow W. The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J Biol Chem. 1993 Dec 25;268(36):27428–27439. [PubMed] [Google Scholar]
- Small G. M., Szabo L. J., Lazarow P. B. Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 1988 Apr;7(4):1167–1173. doi: 10.1002/j.1460-2075.1988.tb02927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swinkels B. W., Gould S. J., Subramani S. Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett. 1992 Jun 29;305(2):133–136. doi: 10.1016/0014-5793(92)80880-p. [DOI] [PubMed] [Google Scholar]
- Ueda M., Tanaka A., Fukui S. Characterization of peroxisomal and mitochondrial carnitine acetyltransferases purified from alkane-grown Candida tropicalis. Eur J Biochem. 1984 Feb 1;138(3):445–449. doi: 10.1111/j.1432-1033.1984.tb07936.x. [DOI] [PubMed] [Google Scholar]
- Ueda M., Tanaka A., Fukui S. Peroxisomal and mitochondrial carnitine acetyltransferases in alkane-grown yeast Candida tropicalis. Eur J Biochem. 1982 May;124(1):205–210. doi: 10.1111/j.1432-1033.1982.tb05926.x. [DOI] [PubMed] [Google Scholar]
- Ueda M., Tanaka A., Horikawa S., Numa S., Fukui S. Synthesis in vitro of precursor-type carnitine acetyltransferase with messenger RNA from Candida tropicalis. Eur J Biochem. 1984 Feb 1;138(3):451–457. doi: 10.1111/j.1432-1033.1984.tb07937.x. [DOI] [PubMed] [Google Scholar]
- Van der Leij I., Franse M. M., Elgersma Y., Distel B., Tabak H. F. PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11782–11786. doi: 10.1073/pnas.90.24.11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Leij I., Van den Berg M., Boot R., Franse M., Distel B., Tabak H. F. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol. 1992 Oct;119(1):153–162. doi: 10.1083/jcb.119.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanders R. J., IJlst L., van Gennip A. H., Jakobs C., de Jager J. P., Dorland L., van Sprang F. J., Duran M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 1990;13(3):311–314. doi: 10.1007/BF01799383. [DOI] [PubMed] [Google Scholar]
- van Roermund C. W., Elgersma Y., Singh N., Wanders R. J., Tabak H. F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 1995 Jul 17;14(14):3480–3486. doi: 10.1002/j.1460-2075.1995.tb07354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]