Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2015 Feb 7.
Published in final edited form as: Org Lett. 2013 Dec 13;16(3):730–732. doi: 10.1021/ol403431u

Redox-Neutral α-Arylation of Amines

Weijie Chen 1, Richard G Wilde 1, Daniel Seidel 1,
PMCID: PMC3946350  NIHMSID: NIHMS549506  PMID: 24328366

Abstract

graphic file with name nihms549506u1.jpg

The direct α-arylation/N-alkylation of cyclic amines was achieved in a redox-neutral fashion under mild conditions. Transformations occur in the absence of any additives or are promoted by simple carboxylic acids.


Redox-neutral1 approaches to the α-functionalization of amines offer attractive alternatives to the more prevalent oxidative variants.2 With regard to the mechanism of these reactions, the majority of redox-neutral amine α-functionalizations involve hydride-shifts or sigmatropic H-transfer steps.3 As part of a broader effort, our group has developed a number of reactions in which amine α-functionalization is accomplished via a different approach that features azomethine ylides as reactive intermediates (Scheme 1).4,5,6 Here we report a strategy that enables the redox-neutral α-arylation of simple cyclic amines.

Scheme 1.

Scheme 1

Concept for redox-neutral amine α-functionalization.

Our approach to the redox-neutral α-functionalization of amines involves the condensation of a secondary amine (e.g., pyrrolidine) with an aldehyde to give intermediates 1/1′ (Scheme 1). These species undergo redox-isomerization via azomethine ylide 3 to provide intermediates 4/4′ which are ultimately captured with a nucleophile HNu to yield α-functionalized amine 5. The difficulty in realizing such transformations lies in the well-established propensity of species 1/1′ to undergo classic organic reactions (e.g., Strecker, Mannich, Kabachnik-Fields reaction, Friedel-Crafts alkylation, alkynylation, etc.). In previous work, we have successfully averted the classic reaction pathway by employing appropriate catalysts such as carboxylic acids or copper carboxylates in combination with sterically demanding aldehydes (e.g., 2,6-dichlorobenzaldehyde, mesitaldehyde). In favorable cases (α-cyanation4f and α-phosphine oxide formation4j) compounds 2 can undergo equilibration to the apparently thermodynamically more stable regioisomers 5. This finding enabled the use of simple aromatic aldehydes as reaction partners.

We commenced our efforts toward the development of a redox-neutral amine α-arylation7,8,9,10,11 by exposing a mixture of pyrrolidine, 2,6-dichlorobenzaldehyde, β-naphthol and benzoic acid (20 mol %) to reflux in toluene (Scheme 2). Remarkably, the reaction was extremely facile and complete consumption of the aldehyde was noted after 15 min. However, the desired product 5a was obtained in only 22% yield. In addition, products 6 and 7 were isolated in 22% and 33% yield, respectively. The formation of both 6 and 7 is consistent with the intermediacy of enamines and other species that would be expected along the path to 1,3-dibenzyl pyrroles.5a Notably, the “classic” Friedel-Crafts product 2a was not observed under these conditions. We hypothesized that a consistently low concentration of aldehyde might prevent the formation of undesired byproducts. Consequently, a number of experiments were performed in which the aldehyde was added slowly via syringe pump.11c Indeed, with an aldehyde addition time of five hours, 5a was isolated in 81% yield. Interestingly, an otherwise identical experiment conducted in the absence of benzoic acid resulted in an improved yield of 96%. Apparently, β-naphthol is sufficiently acidic to promote the required redox isomerization.

Scheme 2.

Scheme 2

Initial results and optimized conditions for the α-arylation of pyrrolidine with β-naphthol.

A number of experiments were performed in an effort to extend the α-arylation procedure to indole as the nucleophile (Table 1). In the absence of any additive, the reaction provided the undesired regioisomer 2b as the major product (entry 1). The situation improved dramatically upon addition of 20 mol % of benzoic acid (entry 2). In the event, 5b/2b were isolated in a 9.5:1 ratio and 79% combined yield. Carboxylic acids with slightly reduced acidities such as (4-dimethylamino)benzoic acid and 2-ethylhexanoic acid (2-EHA) provided slightly improved results (entries 3–4). Increasing the amount of 2-EHA to one equivalent led to an almost complete suppression of the undesired regioisomer and a further increase in the yield of 5b (entry 6). Direct mixing of all components also resulted in an excellent product ratio but lower overall yield compared to the slow addition approach (entry 7).

Table 1.

Evaluation of reaction conditions for the α-arylation of pyrrolidine with indolea

graphic file with name nihms549506e1.jpg (1)

entry additive (mol %) ratio
5b:2b
yield
5b+2b (%)
1 1:1.8 76
2 PhCOOH (20) 9.5:1 79
3 4-Dimethylamino benzoic acid (20) 11.3:1 81
4 2-Ethylhexanoic acid (20) 11.6:1 80
5 2-Ethylhexanoic acid (50) 21:1 85
6 2-Ethylhexanoic acid (100) > 25:1 86
7b 2-Ethylhexanoic acid (100) > 25:1 71
a

Reactions were performed on a 0.5 mmol scale.

b

All reagents were mixed directly and heated in toluene (0.25 M) under reflux for 15 min.

In order to establish the impact of the aldehyde on product ratios, the reactions of pyrrolidine with either β-naphthol or indole were evaluated with two representative aldehydes, benzaldehyde and mesitaldehyde (eqs 23). Consistent with our observations in the α-alkynylation,4g benzaldehyde gave relatively poor product ratios while mesitaldehyde provided the desired regioisomers with excellent selectivities.

graphic file with name nihms549506e2.jpg (2)
graphic file with name nihms549506e3.jpg (3)

The α-arylation procedure was applicable to various naphthols, phenols, indoles and pyrroles (Scheme 3). Excellent product ratios were obtained in most instances, including with phenols and pyrroles. Notably, these substrates provided poor results in the corresponding decarboxylative three-component reaction that was developed previously by our group.11c Piperidine also furnished the corresponding products with excellent regioselectivities, albeit in reduced yields.

Scheme 3.

Scheme 3

Substrate scope for the α-arylationa

a Reactions were performed on a 1 mmol scale. Yields correspond to the desired regioisomers. b Reactions with β-naphthols and indoles: Ar′H (1.5 equiv); reactions with phenols or pyrroles: Ar′H (5 equiv); reactions with indoles and pyrroles: 2-EHA (1 equiv). c 2.5 equiv of 2-EHA were used. d 2,5-Disubstituted pyrrole product was isolated as a byproduct in 19% yield (dr = 3:1).

In summary, we have developed unprecedented redox-neutral α-arylations of simple cyclic amines that are applicable to a range of naphthols, phenols, indoles and pyrroles. Further applications of our concept for redox-neutral amine α-functionalization are under development.

Supplementary Material

1_si_001

Acknowledgments

Financial support from the NIH–NIGMS (grant R01GM101389-01) is gratefully acknowledged.

Footnotes

Supporting Information Available. Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

  • 1.Reviews on redox-economy and redox-neutral amine α-functionalization: Burns NZ, Baran PS, Hoffmann RW. Angew Chem Int Ed. 2009;48:2854. doi: 10.1002/anie.200806086.Newhouse T, Baran PS, Hoffmann RW. Chem Soc Rev. 2009;38:3010. doi: 10.1039/b821200g.Peng B, Maulide N. Chem Eur J. 2013;19:13274. doi: 10.1002/chem.201301522.
  • 2.Selected reviews on amine α-functionalization: Murahashi SI. Angew Chem, Int Ed Engl. 1995;34:2443.Matyus P, Elias O, Tapolcsanyi P, Polonka-Balint A, Halasz-Dajka B. Synthesis. 2006:2625.Campos KR. Chem Soc Rev. 2007;36:1069. doi: 10.1039/b607547a.Murahashi SI, Zhang D. Chem Soc Rev. 2008;37:1490. doi: 10.1039/b706709g.Li CJ. Acc Chem Res. 2009;42:335. doi: 10.1021/ar800164n.Yoo WJ, Li CJ. Top Curr Chem. 2010;292:281. doi: 10.1007/128_2009_17.Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem Eur J. 2010;16:2654. doi: 10.1002/chem.200902374.Liu C, Zhang H, Shi W, Lei AW. Chem Rev. 2011;111:1780. doi: 10.1021/cr100379j.Yeung CS, Dong VM. Chem Rev. 2011;111:1215. doi: 10.1021/cr100280d.Sun CL, Li BJ, Shi ZJ. Chem Rev. 2011;111:1293. doi: 10.1021/cr100198w.Wendlandt AE, Suess AM, Stahl SS. Angew Chem Int Ed. 2011;50:11062. doi: 10.1002/anie.201103945.Jones KM, Klussmann M. Synlett. 2012;23:159.Zhang C, Tang CH, Jiao N. Chem Soc Rev. 2012;41:3464. doi: 10.1039/c2cs15323h.Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BUW. Chem Eur J. 2012;18:10092. doi: 10.1002/chem.201201539.Pan SC. Beilstein J Org Chem. 2012;8:1374. doi: 10.3762/bjoc.8.159.Platonova AY, Glukhareva TV, Zimovets OA, Morzherin YY. Chem Heterocycl Compd. 2013;49:357.
  • 3.Selected recent examples of amine α-functionalization via Hshifts: Barluenga J, Fananas-Mastral M, Aznar F, Valdes C. Angew Chem Int Ed. 2008;47:6594. doi: 10.1002/anie.200802268.Zhang C, Murarka S, Seidel D. J Org Chem. 2009;74:419. doi: 10.1021/jo802325x.Murarka S, Zhang C, Konieczynska MD, Seidel D. Org Lett. 2009;11:129. doi: 10.1021/ol802519r.Mori K, Ohshima Y, Ehara K, Akiyama T. Chem Lett. 2009;38:524.Ruble JC, Hurd AR, Johnson TA, Sherry DA, Barbachyn MR, Toogood PL, Bundy GL, Graber DR, Kamilar GM. J Am Chem Soc. 2009;131:3991. doi: 10.1021/ja808014h.Cui L, Peng Y, Zhang L. J Am Chem Soc. 2009;131:8394. doi: 10.1021/ja903531g.Murarka S, Deb I, Zhang C, Seidel D. J Am Chem Soc. 2009;131:13226. doi: 10.1021/ja905213f.Dunkel P, Turos G, Benyei A, Ludanyi K, Matyus P. Tetrahedron. 2010;66:2331.Zhou G, Zhang J. Chem Commun. 2010;46:6593. doi: 10.1039/c0cc01946a.Kang YK, Kim SM, Kim DY. J Am Chem Soc. 2010;132:11847. doi: 10.1021/ja103786c.Cao WD, Liu XH, Wang WT, Lin LL, Feng XM. Org Lett. 2011;13:600. doi: 10.1021/ol1028282.Haibach MC, Deb I, De CK, Seidel D. J Am Chem Soc. 2011;133:2100. doi: 10.1021/ja110713k.Mori K, Ehara K, Kurihara K, Akiyama T. J Am Chem Soc. 2011;133:6166. doi: 10.1021/ja2014955.Zhou GH, Liu F, Zhang JL. Chem Eur J. 2011;17:3101. doi: 10.1002/chem.201100019.He YP, Du YL, Luo SW, Gong LZ. Tetrahedron Lett. 2011;52:7064.Jurberg ID, Peng B, Woestefeld E, Wasserloos M, Maulide N. Angew Chem, Int Ed. 2012;51:1950. doi: 10.1002/anie.201108639.Sugiishi T, Nakamura H. J Am Chem Soc. 2012;134:2504. doi: 10.1021/ja211092q.Wang Y, Chi Y, Zhang WX, Xi ZF. J Am Chem Soc. 2012;134:2926. doi: 10.1021/ja211486f.Han YY, Han WY, Hou X, Zhang XM, Yuan WC. Org Lett. 2012;14:4054. doi: 10.1021/ol301559k.Chen LJ, Zhang L, Lv J, Cheng JP, Luo SZ. Chem Eur J. 2012;18:8891. doi: 10.1002/chem.201201532.He YP, Wu H, Chen DF, Yu J, Gong LZ. Chem Eur J. 2013;19:5232. doi: 10.1002/chem.201300052.
  • 4.a) Zhang C, De CK, Mal R, Seidel D. J Am Chem Soc. 2008;130:416. doi: 10.1021/ja077473r. [DOI] [PubMed] [Google Scholar]; b) Deb I, Seidel D. Tetrahedron Lett. 2010;51:2945. [Google Scholar]; c) Zhang C, Das D, Seidel D. Chem Sci. 2011;2:233. [Google Scholar]; d) Deb I, Das D, Seidel D. Org Lett. 2011;13:812. doi: 10.1021/ol1031359. [DOI] [PubMed] [Google Scholar]; e) Zhang C, De CK, Seidel D. Org Synth. 2012;89:274. [Google Scholar]; f) Ma L, Chen W, Seidel D. J Am Chem Soc. 2012;134:15305. doi: 10.1021/ja308009g. [DOI] [PubMed] [Google Scholar]; g) Das D, Sun AX, Seidel D. Angew Chem Int Ed. 2013;52:3765. doi: 10.1002/anie.201300021. [DOI] [PMC free article] [PubMed] [Google Scholar]; h) Dieckmann A, Richers MT, Platonova AY, Zhang C, Seidel D, Houk KN. J Org Chem. 2013;78:4132. doi: 10.1021/jo400483h. [DOI] [PMC free article] [PubMed] [Google Scholar]; i) Richers MT, Deb I, Platonova AY, Zhang C, Seidel D. Synthesis. 2013;45:1730. [PMC free article] [PubMed] [Google Scholar]; j) Das D, Seidel D. Org Lett. 2013;15:4358. doi: 10.1021/ol401858k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Examples of related amine redox transformations: Oda M, Fukuchi Y, Ito S, Thanh NC, Kuroda S. Tetrahedron Lett. 2007;48:9159.Zheng L, Yang F, Dang Q, Bai X. Org Lett. 2008;10:889. doi: 10.1021/ol703049j.Pahadi NK, Paley M, Jana R, Waetzig SR, Tunge JA. J Am Chem Soc. 2009;131:16626. doi: 10.1021/ja907357g.Mao H, Xu R, Wan J, Jiang Z, Sun C, Pan Y. Chem Eur J. 2010;16:13352. doi: 10.1002/chem.201001896.Ghavtadze N, Narayan R, Wibbeling B, Wuerthwein EU. J Org Chem. 2011;76:5185. doi: 10.1021/jo200896y.Xue XS, Yu A, Cai Y, Cheng JP. Org Lett. 2011;13:6054. doi: 10.1021/ol2025247.Zheng Q-H, Meng W, Jiang G-J, Yu Z-X. Org Lett. 2013:15. doi: 10.1021/ol402517e.Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S. Angew Chem Int Ed. 2013:52. doi: 10.1002/ange.201308699.
  • 6.Selected reviews on azomethine ylides: Padwa A, Pearson WH. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Vol. 59 Wiley; Chichester, U. K: 2002. Najera C, Sansano JM. Curr Org Chem. 2003;7:1105.Coldham I, Hufton R. Chem Rev. 2005;105:2765. doi: 10.1021/cr040004c.Pandey G, Banerjee P, Gadre SR. Chem Rev. 2006;106:4484. doi: 10.1021/cr050011g.Pinho e Melo TMVD. Eur J Org Chem. 2006:2873.Najera C, Sansano JM. Top Heterocycl Chem. 2008;12:117.Nyerges M, Toth J, Groundwater PW. Synlett. 2008:1269.Adrio J, Carretero JC. Chem Commun. 2011;47:6784. doi: 10.1039/c1cc10779h.
  • 7.Examples of oxidative amine α-arylation: Li ZP, Li CJ. J Am Chem Soc. 2005;127:6968. doi: 10.1021/ja0516054.Li ZP, Bohle DS, Li CJ. Proc Natl Acad Sci U S A. 2006;103:8928. doi: 10.1073/pnas.0601687103.Basle O, Li CJ. Org Lett. 2008;10:3661. doi: 10.1021/ol8012588.Ohta M, Quick MP, Yamaguchi J, Wunsch B, Itami K. Chem-Asian J. 2009;4:1416. doi: 10.1002/asia.200900157.Ghobrial M, Harhammer K, Mihovilovic MD, Schnurch M. Chem Commun. 2010;46:8836. doi: 10.1039/c0cc02491k.Jones KM, Karier P, Klussmann M. ChemCatChem. 2012;4:51.Boess E, Schmitz C, Klussmann M. J Am Chem Soc. 2012;134:5317. doi: 10.1021/ja211697s.Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org Lett. 2013;15:1092. doi: 10.1021/ol4001153.Muramatsu W, Nakano K, Li CJ. Org Lett. 2013;15:3650. doi: 10.1021/ol401534g.Ratnikov MO, Xu XF, Doyle MP. J Am Chem Soc. 2013;135:9475. doi: 10.1021/ja402479r.
  • 8.Examples of metal catalyzed α-arylations of directing-group bearing amines: Pastine SJ, Gribkov DV, Sames D. J Am Chem Soc. 2006;128:14220. doi: 10.1021/ja064481j.Dastbaravardeh N, Schnurch M, Mihovilovic MD. Org Lett. 2012;14:1930. doi: 10.1021/ol300627p.Peschiulli A, Smout V, Storr TE, Mitchell EA, Elias Z, Herrebout W, Berthelot D, Meerpoel L, Maes BUW. Chem Eur J. 2013;19:10378. doi: 10.1002/chem.201204438.
  • 9.For a radical based approach to amine α-arylation, see: Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J Am Chem Soc. 2010;132:5568. doi: 10.1021/ja100651t.
  • 10.Examples of photoredox approaches to amine α-arylation: McNally A, Prier CK, MacMillan DWC. Science. 2011;334:1114. doi: 10.1126/science.1213920.Freeman DB, Furst L, Condie AG, Stephenson CRJ. Org Lett. 2012;14:94. doi: 10.1021/ol202883v.Zhong JJ, Meng QY, Wang GX, Liu Q, Chen B, Feng K, Tung CH, Wu LZ. Chem Eur J. 2013;19:6443. doi: 10.1002/chem.201204572.
  • 11.Related decarboxylative α-arylations of amino acids: Bi HP, Zhao L, Liang YM, Li CJ. Angew Chem Int Ed. 2009;48:792. doi: 10.1002/anie.200805122.Bi HP, Chen WW, Liang YM, Li CJ. Org Lett. 2009;11:3246. doi: 10.1021/ol901129v.Zhang C, Seidel D. J Am Chem Soc. 2010;132:1798. doi: 10.1021/ja910719x.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

1_si_001

RESOURCES