Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1995 Nov 1;14(21):5444–5454. doi: 10.1002/j.1460-2075.1995.tb00228.x

Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation.

C J Farr 1, R A Bayne 1, D Kipling 1, W Mills 1, R Critcher 1, H J Cooke 1
PMCID: PMC394653  PMID: 7489733

Abstract

A linear mammalian artificial chromosome vector will require at least three functional elements: a centromere, two telomeres and replication origins. One route to generate such a vector is by the fragmentation of an existing chromosome. We have previously described the use of cloned telomeric DNA to generate and stably rescue truncated derivatives of a human X chromosome in a somatic cell hybrid. Further rounds of telomere-associated chromosome fragmentation have now been used to engineer a human X-derived minichromosome. This minichromosome is estimated to be < 10 Mb in size. In situ hybridization and molecular analysis reveal that the minichromosome has a linear structure, with two introduced telomere constructs flanking a 2.5 Mb alpha-satellite array. The highly truncated chromosome also retains some chromosome-specific DNA, originating from Xp11.21. There is no significant change in the mitotic stability of the minichromosome as compared with the X chromosome from which it was derived.

Full text

PDF
5444

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett M. A., Buckle V. J., Evans E. P., Porter A. C., Rout D., Smith A. G., Brown W. R. Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 1993 Jan 11;21(1):27–36. doi: 10.1093/nar/21.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bayne R. A., Broccoli D., Taggart M. H., Thomson E. J., Farr C. J., Cooke H. J. Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing. Hum Mol Genet. 1994 Apr;3(4):539–546. doi: 10.1093/hmg/3.4.539. [DOI] [PubMed] [Google Scholar]
  3. Blennow E., Telenius H., de Vos D., Larsson C., Henriksson P., Johansson O., Carter N. P., Nordenskjöld M. Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am J Hum Genet. 1994 May;54(5):877–883. [PMC free article] [PubMed] [Google Scholar]
  4. Brown K. E., Barnett M. A., Burgtorf C., Shaw P., Buckle V. J., Brown W. R. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum Mol Genet. 1994 Aug;3(8):1227–1237. doi: 10.1093/hmg/3.8.1227. [DOI] [PubMed] [Google Scholar]
  5. Brown W. R. Mammalian artificial chromosomes. Curr Opin Genet Dev. 1992 Jun;2(3):479–486. doi: 10.1016/s0959-437x(05)80161-3. [DOI] [PubMed] [Google Scholar]
  6. Callen D. F., Eyre H., Yip M. Y., Freemantle J., Haan E. A. Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am J Med Genet. 1992 Jul 1;43(4):709–715. doi: 10.1002/ajmg.1320430412. [DOI] [PubMed] [Google Scholar]
  7. Carine K., Jacquemin-Sablon A., Waltzer E., Mascarello J., Scheffler I. E. Molecular characterization of human minichromosomes with centromere from chromosome 1 in human-hamster hybrid cells. Somat Cell Mol Genet. 1989 Sep;15(5):445–460. doi: 10.1007/BF01534895. [DOI] [PubMed] [Google Scholar]
  8. Carine K., Solus J., Waltzer E., Manch-Citron J., Hamkalo B. A., Scheffler I. E. Chinese hamster cells with a minichromosome containing the centromere region of human chromosome 1. Somat Cell Mol Genet. 1986 Sep;12(5):479–491. doi: 10.1007/BF01539919. [DOI] [PubMed] [Google Scholar]
  9. Chartier F. L., Keer J. T., Sutcliffe M. J., Henriques D. A., Mileham P., Brown S. D. Construction of a mouse yeast artificial chromosome library in a recombination-deficient strain of yeast. Nat Genet. 1992 May;1(2):132–136. doi: 10.1038/ng0592-132. [DOI] [PubMed] [Google Scholar]
  10. Crolla J. A., Dennis N. R., Jacobs P. A. A non-isotopic in situ hybridisation study of the chromosomal origin of 15 supernumerary marker chromosomes in man. J Med Genet. 1992 Oct;29(10):699–703. doi: 10.1136/jmg.29.10.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cross S., Lindsey J., Fantes J., McKay S., McGill N., Cooke H. The structure of a subterminal repeated sequence present on many human chromosomes. Nucleic Acids Res. 1990 Nov 25;18(22):6649–6657. doi: 10.1093/nar/18.22.6649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Farr C. J., Stevanovic M., Thomson E. J., Goodfellow P. N., Cooke H. J. Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet. 1992 Dec;2(4):275–282. doi: 10.1038/ng1292-275. [DOI] [PubMed] [Google Scholar]
  13. Farr C., Fantes J., Goodfellow P., Cooke H. Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7006–7010. doi: 10.1073/pnas.88.16.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  15. Gilgenkrantz S., Tridon P., Pinel-Briquel N., Beurey J., Weber M. Translocation (X;9)(p11;q34) in a girl with incontinentia pigmenti (IP): implications for the regional assignment of the IP locus to Xp11? Ann Genet. 1985;28(2):90–92. [PubMed] [Google Scholar]
  16. Gorski J. L., Burright E. N., Harnden C. E., Stein C. K., Glover T. W., Reyner E. L. Localization of DNA sequences to a region within Xp11.21 between incontinentia pigmenti (IP1) X-chromosomal translocation breakpoints. Am J Hum Genet. 1991 Jan;48(1):53–64. [PMC free article] [PubMed] [Google Scholar]
  17. Goss S. J., Harris H. Gene transfer by means of cell fusion I. Statistical mapping of the human X-chromosome by analysis of radiation-induced gene segregation. J Cell Sci. 1977 Jun;25:17–37. doi: 10.1242/jcs.25.1.17. [DOI] [PubMed] [Google Scholar]
  18. Greig G. M., Sharp C. B., Carrel L., Willard H. F. Duplicated zinc finger protein genes on the proximal short arm of the human X chromosome: isolation, characterization and X-inactivation studies. Hum Mol Genet. 1993 Oct;2(10):1611–1618. doi: 10.1093/hmg/2.10.1611. [DOI] [PubMed] [Google Scholar]
  19. Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
  20. Haaf T., Warburton P. E., Willard H. F. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell. 1992 Aug 21;70(4):681–696. doi: 10.1016/0092-8674(92)90436-g. [DOI] [PubMed] [Google Scholar]
  21. Hahnenberger K. M., Baum M. P., Polizzi C. M., Carbon J., Clarke L. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1989 Jan;86(2):577–581. doi: 10.1073/pnas.86.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hamkalo B. A., Farnham P. J., Johnston R., Schimke R. T. Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1126–1130. doi: 10.1073/pnas.82.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hanish J. P., Yanowitz J. L., de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8861–8865. doi: 10.1073/pnas.91.19.8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Heiskanen M., Karhu R., Hellsten E., Peltonen L., Kallioniemi O. P., Palotie A. High resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embedded cells. Biotechniques. 1994 Nov;17(5):928-9, 932-3. [PubMed] [Google Scholar]
  25. Huxley C., Farr C., Gennaro M. L., Haaf T. Ordering up big MACs. Biotechnology (N Y) 1994 Jun;12(6):586–590. doi: 10.1038/nbt0694-586. [DOI] [PubMed] [Google Scholar]
  26. Huxley C. Mammalian artificial chromosomes: a new tool for gene therapy. Gene Ther. 1994 Jan;1(1):7–12. [PubMed] [Google Scholar]
  27. Itzhaki J. E., Barnett M. A., MacCarthy A. B., Buckle V. J., Brown W. R., Porter A. C. Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet. 1992 Dec;2(4):283–287. doi: 10.1038/ng1292-283. [DOI] [PubMed] [Google Scholar]
  28. Kajii T., Tsukahara M., Fukushima Y., Hata A., Matsuo K., Kuroki Y. Translocation (X;13)(p11.21;q12.3) in a girl with incontinentia pigmenti and bilateral retinoblastoma. Ann Genet. 1985;28(4):219–223. [PubMed] [Google Scholar]
  29. Kaster K. R., Burgett S. G., Rao R. N., Ingolia T. D. Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res. 1983 Oct 11;11(19):6895–6911. doi: 10.1093/nar/11.19.6895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kaufman E. R., Davidson R. L. Novel phenotypes arising from selection of hamster melanoma cells for resistance to BUdR. Exp Cell Res. 1977 Jun;107(1):15–24. doi: 10.1016/0014-4827(77)90380-9. [DOI] [PubMed] [Google Scholar]
  31. Larin Z., Fricker M. D., Tyler-Smith C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum Mol Genet. 1994 May;3(5):689–695. doi: 10.1093/hmg/3.5.689. [DOI] [PubMed] [Google Scholar]
  32. Law M. L., Davidson J. N., Kao F. T. Isolation of a human repetitive sequence and its application to regional chromosome mapping. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7390–7394. doi: 10.1073/pnas.79.23.7390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mahtani M. M., Willard H. F. Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics. 1990 Aug;7(4):607–613. doi: 10.1016/0888-7543(90)90206-a. [DOI] [PubMed] [Google Scholar]
  34. Manuelidis L. Chromosomal localization of complex and simple repeated human DNAs. Chromosoma. 1978 Mar 22;66(1):23–32. doi: 10.1007/BF00285813. [DOI] [PubMed] [Google Scholar]
  35. Miller A. P., Gustashaw K., Wolff D. J., Rider S. H., Monaco A. P., Eble B., Schlessinger D., Gorski J. L., van Ommen G. J., Weissenbach J. Three genes that escape X chromosome inactivation are clustered within a 6 Mb YAC contig and STS map in Xp11.21-p11.22. Hum Mol Genet. 1995 Apr;4(4):731–739. doi: 10.1093/hmg/4.4.731. [DOI] [PubMed] [Google Scholar]
  36. Mitchell A. R., Gosden J. R., Miller D. A. A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes. Chromosoma. 1985;92(5):369–377. doi: 10.1007/BF00327469. [DOI] [PubMed] [Google Scholar]
  37. Monaco A. P., Larin Z. YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. 1994 Jul;12(7):280–286. doi: 10.1016/0167-7799(94)90140-6. [DOI] [PubMed] [Google Scholar]
  38. Murray A. W., Szostak J. W. Construction of artificial chromosomes in yeast. Nature. 1983 Sep 15;305(5931):189–193. doi: 10.1038/305189a0. [DOI] [PubMed] [Google Scholar]
  39. Neil D. L., Villasante A., Fisher R. B., Vetrie D., Cox B., Tyler-Smith C. Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors. Nucleic Acids Res. 1990 Mar 25;18(6):1421–1428. doi: 10.1093/nar/18.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nicol L., Jeppesen P. Human autoimmune sera recognize a conserved 26 kD protein associated with mammalian heterochromatin that is homologous to heterochromatin protein 1 of Drosophila. Chromosome Res. 1994 May;2(3):245–253. doi: 10.1007/BF01553325. [DOI] [PubMed] [Google Scholar]
  41. Ohashi H., Wakui K., Ogawa K., Okano T., Niikawa N., Fukushima Y. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am J Hum Genet. 1994 Dec;55(6):1202–1208. [PMC free article] [PubMed] [Google Scholar]
  42. Olsen A. S., McBride O. W., Moore D. E. Number and size of human X chromosome fragments transferred to mouse cells by chromosome-mediated gene transfer. Mol Cell Biol. 1981 May;1(5):439–448. doi: 10.1128/mcb.1.5.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Puck T. T., Kao F. T. Genetics of somatic mammalian cells. V. Treatment with 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1227–1234. doi: 10.1073/pnas.58.3.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Reid L. H., Gregg R. G., Smithies O., Koller B. H. Regulatory elements in the introns of the human HPRT gene are necessary for its expression in embryonic stem cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4299–4303. doi: 10.1073/pnas.87.11.4299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stetten G., Davidson R. L., Latt S. A. 33258 Hoechst enhances the selectivity of the bromodeoxyuridine--light method of isolating conditional lethal mutants. Exp Cell Res. 1977 Sep;108(2):447–452. doi: 10.1016/s0014-4827(77)80055-4. [DOI] [PubMed] [Google Scholar]
  46. Stetten G., Latt S. A., Davidson R. L. 33258 Hoechst enhancement of the photosensitivity of bromodeoxyuridine-substituted cells. Somatic Cell Genet. 1976 May;2(3):285–290. doi: 10.1007/BF01538967. [DOI] [PubMed] [Google Scholar]
  47. Taylor S. S., Larin Z., Smith C. T. Addition of functional human telomeres to YACs. Hum Mol Genet. 1994 Aug;3(8):1383–1386. doi: 10.1093/hmg/3.8.1383. [DOI] [PubMed] [Google Scholar]
  48. Tyler-Smith C., Oakey R. J., Larin Z., Fisher R. B., Crocker M., Affara N. A., Ferguson-Smith M. A., Muenke M., Zuffardi O., Jobling M. A. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat Genet. 1993 Dec;5(4):368–375. doi: 10.1038/ng1293-368. [DOI] [PubMed] [Google Scholar]
  49. Tyler-Smith C., Willard H. F. Mammalian chromosome structure. Curr Opin Genet Dev. 1993 Jun;3(3):390–397. doi: 10.1016/0959-437x(93)90110-b. [DOI] [PubMed] [Google Scholar]
  50. Voullaire L. E., Slater H. R., Petrovic V., Choo K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet. 1993 Jun;52(6):1153–1163. [PMC free article] [PubMed] [Google Scholar]
  51. Wevrick R., Earnshaw W. C., Howard-Peebles P. N., Willard H. F. Partial deletion of alpha satellite DNA associated with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement. Mol Cell Biol. 1990 Dec;10(12):6374–6380. doi: 10.1128/mcb.10.12.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Willard H. F. Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet. 1985 May;37(3):524–532. [PMC free article] [PubMed] [Google Scholar]
  53. Wolfe J., Darling S. M., Erickson R. P., Craig I. W., Buckle V. J., Rigby P. W., Willard H. F., Goodfellow P. N. Isolation and characterization of an alphoid centromeric repeat family from the human Y chromosome. J Mol Biol. 1985 Apr 20;182(4):477–485. doi: 10.1016/0022-2836(85)90234-7. [DOI] [PubMed] [Google Scholar]
  54. Wolff D. J., Brown C. J., Schwartz S., Duncan A. M., Surti U., Willard H. F. Small marker X chromosomes lack the X inactivation center: implications for karyotype/phenotype correlations. Am J Hum Genet. 1994 Jul;55(1):87–95. [PMC free article] [PubMed] [Google Scholar]
  55. de Grouchy J., Turleau C., Doussau de Bazignan M., Maroteaux P., Thibaud D. Incontinentia pigmenti (IP) and r(X). Tentative mapping of the IP locus to the X juxtacentromeric region. Ann Genet. 1985;28(2):86–89. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES