Abstract
During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.
Full text
PDF![5736](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/1758b63902cb/emboj00046-0290.png)
![5737](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/33f60043f973/emboj00046-0291.png)
![5738](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/bd2b410afe27/emboj00046-0292.png)
![5739](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/5df6e39ee3c9/emboj00046-0293.png)
![5740](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/15c5c984d46b/emboj00046-0294.png)
![5741](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/2f411e0ce1c0/emboj00046-0295.png)
![5742](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/42de0cce7531/emboj00046-0296.png)
![5743](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/25eb1616a0f7/emboj00046-0297.png)
![5744](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84e/394688/18e30310dcba/emboj00046-0298.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. E., Tsaneva I. R., West S. C. Dissociation of RecA filaments from duplex DNA by the RuvA and RuvB DNA repair proteins. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9901–9905. doi: 10.1073/pnas.91.21.9901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams D. E., West S. C. Unwinding of closed circular DNA by the Escherichia coli RuvA and RuvB recombination/repair proteins. J Mol Biol. 1995 Mar 31;247(3):404–417. doi: 10.1006/jmbi.1995.0149. [DOI] [PubMed] [Google Scholar]
- Benson F. E., Illing G. T., Sharples G. J., Lloyd R. G. Nucleotide sequencing of the ruv region of Escherichia coli K-12 reveals a LexA regulated operon encoding two genes. Nucleic Acids Res. 1988 Feb 25;16(4):1541–1549. doi: 10.1093/nar/16.4.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell. 1993 Oct 22;75(2):351–361. doi: 10.1016/0092-8674(93)80076-q. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cox M. M., Lehman I. R. recA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3433–3437. doi: 10.1073/pnas.78.6.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DasGupta C., Shibata T., Cunningham R. P., Radding C. M. The topology of homologous pairing promoted by RecA protein. Cell. 1980 Nov;22(2 Pt 2):437–446. doi: 10.1016/0092-8674(80)90354-2. [DOI] [PubMed] [Google Scholar]
- Hahn T. R., West S., Howard-Flanders P. RecA-mediated strand exchange reactions between duplex DNA molecules containing damaged bases, deletions, and insertions. J Biol Chem. 1988 May 25;263(15):7431–7436. [PubMed] [Google Scholar]
- Hiom K., West S. C. Branch migration during homologous recombination: assembly of a RuvAB-Holliday junction complex in vitro. Cell. 1995 Mar 10;80(5):787–793. doi: 10.1016/0092-8674(95)90357-7. [DOI] [PubMed] [Google Scholar]
- Iwasaki H., Shiba T., Makino K., Nakata A., Shinagawa H. Overproduction, purification, and ATPase activity of the Escherichia coli RuvB protein involved in DNA repair. J Bacteriol. 1989 Oct;171(10):5276–5280. doi: 10.1128/jb.171.10.5276-5280.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwasaki H., Takahagi M., Nakata A., Shinagawa H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev. 1992 Nov;6(11):2214–2220. doi: 10.1101/gad.6.11.2214. [DOI] [PubMed] [Google Scholar]
- Iype L. E., Wood E. A., Inman R. B., Cox M. M. RuvA and RuvB proteins facilitate the bypass of heterologous DNA insertions during RecA protein-mediated DNA strand exchange. J Biol Chem. 1994 Oct 7;269(40):24967–24978. [PubMed] [Google Scholar]
- Kenny M. K., Schlegel U., Furneaux H., Hurwitz J. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J Biol Chem. 1990 May 5;265(13):7693–7700. [PubMed] [Google Scholar]
- Lichten M., Fox M. S. Evidence for inclusion of regions of nonhomology in heteroduplex products of bacteriophage lambda recombination. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7180–7184. doi: 10.1073/pnas.81.22.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. doi: 10.1016/0092-8674(82)90085-x. [DOI] [PubMed] [Google Scholar]
- Lohman T. M., Bujalowski W., Overman L. B. E. coli single strand binding protein: a new look at helix-destabilizing proteins. Trends Biochem Sci. 1988 Jul;13(7):250–255. [PubMed] [Google Scholar]
- Lohman T. M., Ferrari M. E. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem. 1994;63:527–570. doi: 10.1146/annurev.bi.63.070194.002523. [DOI] [PubMed] [Google Scholar]
- Matic I., Radman M., Rayssiguier C. Structure of recombinants from conjugational crosses between Escherichia coli donor and mismatch-repair deficient Salmonella typhimurium recipients. Genetics. 1994 Jan;136(1):17–26. doi: 10.1093/genetics/136.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matic I., Rayssiguier C., Radman M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell. 1995 Feb 10;80(3):507–515. doi: 10.1016/0092-8674(95)90501-4. [DOI] [PubMed] [Google Scholar]
- McCulloch R., Coggins L. W., Colloms S. D., Sherratt D. J. Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J. 1994 Apr 15;13(8):1844–1855. doi: 10.1002/j.1460-2075.1994.tb06453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell A. H., West S. C. Hexameric rings of Escherichia coli RuvB protein. Cooperative assembly, processivity and ATPase activity. J Mol Biol. 1994 Oct 21;243(2):208–215. doi: 10.1006/jmbi.1994.1648. [DOI] [PubMed] [Google Scholar]
- Morel P., Stasiak A., Ehrlich S. D., Cassuto E. Effect of length and location of heterologous sequences on RecA-mediated strand exchange. J Biol Chem. 1994 Aug 5;269(31):19830–19835. [PubMed] [Google Scholar]
- Müller B., Tsaneva I. R., West S. C. Branch migration of Holliday junctions promoted by the Escherichia coli RuvA and RuvB proteins. I. Comparison of RuvAB- and RuvB-mediated reactions. J Biol Chem. 1993 Aug 15;268(23):17179–17184. [PubMed] [Google Scholar]
- Müller B., Tsaneva I. R., West S. C. Branch migration of Holliday junctions promoted by the Escherichia coli RuvA and RuvB proteins. II. Interaction of RuvB with DNA. J Biol Chem. 1993 Aug 15;268(23):17185–17189. [PubMed] [Google Scholar]
- Parsons C. A., Stasiak A., Bennett R. J., West S. C. Structure of a multisubunit complex that promotes DNA branch migration. Nature. 1995 Mar 23;374(6520):375–378. doi: 10.1038/374375a0. [DOI] [PubMed] [Google Scholar]
- Parsons C. A., Tsaneva I., Lloyd R. G., West S. C. Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5452–5456. doi: 10.1073/pnas.89.12.5452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsons C. A., West S. C. Formation of a RuvAB-Holliday junction complex in vitro. J Mol Biol. 1993 Jul 20;232(2):397–405. doi: 10.1006/jmbi.1993.1399. [DOI] [PubMed] [Google Scholar]
- Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. doi: 10.1038/342396a0. [DOI] [PubMed] [Google Scholar]
- Shiba T., Iwasaki H., Nakata A., Shinagawa H. SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8445–8449. doi: 10.1073/pnas.88.19.8445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinagawa H., Makino K., Amemura M., Kimura S., Iwasaki H., Nakata A. Structure and regulation of the Escherichia coli ruv operon involved in DNA repair and recombination. J Bacteriol. 1988 Sep;170(9):4322–4329. doi: 10.1128/jb.170.9.4322-4329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shurvinton C. E., Lloyd R. G. Damage to DNA induces expression of the ruv gene of Escherichia coli. Mol Gen Genet. 1982;185(2):352–355. doi: 10.1007/BF00330811. [DOI] [PubMed] [Google Scholar]
- Stasiak A., Tsaneva I. R., West S. C., Benson C. J., Yu X., Egelman E. H. The Escherichia coli RuvB branch migration protein forms double hexameric rings around DNA. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7618–7622. doi: 10.1073/pnas.91.16.7618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsaneva I. R., Illing G., Lloyd R. G., West S. C. Purification and properties of the RuvA and RuvB proteins of Escherichia coli. Mol Gen Genet. 1992 Oct;235(1):1–10. doi: 10.1007/BF00286175. [DOI] [PubMed] [Google Scholar]
- Tsaneva I. R., Müller B., West S. C. ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell. 1992 Jun 26;69(7):1171–1180. doi: 10.1016/0092-8674(92)90638-s. [DOI] [PubMed] [Google Scholar]
- Tsaneva I. R., Müller B., West S. C. RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1315–1319. doi: 10.1073/pnas.90.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsaneva I. R., West S. C. Targeted versus non-targeted DNA helicase activity of the RuvA and RuvB proteins of Escherichia coli. J Biol Chem. 1994 Oct 21;269(42):26552–26558. [PubMed] [Google Scholar]
- West S. C., Cassuto E., Howard-Flanders P. recA protein promotes homologous-pairing and strand-exchange reactions between duplex DNA molecules. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2100–2104. doi: 10.1073/pnas.78.4.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]