Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Jan 15;13(2):297–305. doi: 10.1002/j.1460-2075.1994.tb06262.x

Molecular cloning of gefiltin (ON1): serial expression of two new neurofilament mRNAs during optic nerve regeneration.

E Glasgow 1, R K Druger 1, C Fuchs 1, W S Lane 1, N Schechter 1
PMCID: PMC394808  PMID: 8313874

Abstract

The goldfish visual pathway displays a remarkable capacity for continued development and plasticity. The intermediate filament proteins of this pathway do not match the intermediate filament protein composition of adult higher vertebrate neurons, which lack the capacity for growth and development. Using a goldfish retina lambda gt10 library we isolated cDNA clones representing the predominant goldfish optic nerve neurofilament protein, ON1. The mRNA for this protein is abundant in retinal ganglion cells, and its level increases slowly during optic nerve regeneration. The rate of ON1 mRNA accumulation after optic nerve crush was compared with that of plasticin, a previously described novel type III neurofilament from goldfish retinal ganglion cells. Plasticin mRNA is normally expressed at low steady state levels, but accumulates dramatically and rapidly, preceding gefiltin mRNA, in response to optic nerve crush. The predicted amino acid sequence for ON1 indicates that it is a novel intermediate filament protein. We have named it gefiltin, for goldfish eye intermediate filament protein. The serial expression of plasticin and gefiltin is discussed with respect to the diversity of neurofilament proteins during neurogenesis.

Full text

PDF
297

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bignami A., Raju T., Dahl D. Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol. 1982 Jun;91(2):286–295. doi: 10.1016/0012-1606(82)90035-5. [DOI] [PubMed] [Google Scholar]
  3. Charnas L. R., Szaro B. G., Gainer H. Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis. J Neurosci. 1992 Aug;12(8):3010–3024. doi: 10.1523/JNEUROSCI.12-08-03010.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chin S. S., Liem R. K. Expression of rat neurofilament proteins NF-L and NF-M in transfected non-neuronal cells. Eur J Cell Biol. 1989 Dec;50(2):475–490. [PubMed] [Google Scholar]
  5. Ching G. Y., Liem R. K. Structure of the gene for the neuronal intermediate filament protein alpha-internexin and functional analysis of its promoter. J Biol Chem. 1991 Oct 15;266(29):19459–19468. [PubMed] [Google Scholar]
  6. Chiu F. C., Barnes E. A., Das K., Haley J., Socolow P., Macaluso F. P., Fant J. Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron. 1989 May;2(5):1435–1445. doi: 10.1016/0896-6273(89)90189-x. [DOI] [PubMed] [Google Scholar]
  7. Cochard P., Paulin D. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci. 1984 Aug;4(8):2080–2094. doi: 10.1523/JNEUROSCI.04-08-02080.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Druger R. K., Levine E. M., Glasgow E., Jones P. S., Schechter N. Cloning of a type I keratin from goldfish optic nerve: differential expression of keratins during regeneration. Differentiation. 1992 Dec;52(1):33–43. doi: 10.1111/j.1432-0436.1992.tb00497.x. [DOI] [PubMed] [Google Scholar]
  10. Easter S. S., Jr, Stuermer C. A. An evaluation of the hypothesis of shifting terminals in goldfish optic tectum. J Neurosci. 1984 Apr;4(4):1052–1063. doi: 10.1523/JNEUROSCI.04-04-01052.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Escurat M., Djabali K., Gumpel M., Gros F., Portier M. M. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat. J Neurosci. 1990 Mar;10(3):764–784. doi: 10.1523/JNEUROSCI.10-03-00764.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fliegner K. H., Liem R. K. Cellular and molecular biology of neuronal intermediate filaments. Int Rev Cytol. 1991;131:109–167. doi: 10.1016/s0074-7696(08)62018-5. [DOI] [PubMed] [Google Scholar]
  13. Geisler N., Kaufmann E., Fischer S., Plessmann U., Weber K. Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J. 1983;2(8):1295–1302. doi: 10.1002/j.1460-2075.1983.tb01584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geisler N., Plessmann U., Weber K. Related amino acid sequences in neurofilaments and non-neural intermediate filaments. Nature. 1982 Apr 1;296(5856):448–450. doi: 10.1038/296448a0. [DOI] [PubMed] [Google Scholar]
  15. Giordano S., Glasgow E., Tesser P., Schechter N. A type II keratin is expressed in glial cells of the goldfish visual pathway. Neuron. 1989 May;2(5):1507–1516. doi: 10.1016/0896-6273(89)90197-9. [DOI] [PubMed] [Google Scholar]
  16. Glasgow E., Druger R. K., Levine E. M., Fuchs C., Schechter N. Plasticin, a novel type III neurofilament protein from goldfish retina: increased expression during optic nerve regeneration. Neuron. 1992 Aug;9(2):373–381. doi: 10.1016/0896-6273(92)90175-d. [DOI] [PubMed] [Google Scholar]
  17. Gorham J. D., Baker H., Kegler D., Ziff E. B. The expression of the neuronal intermediate filament protein peripherin in the rat embryo. Brain Res Dev Brain Res. 1990 Dec 15;57(2):235–248. doi: 10.1016/0165-3806(90)90049-5. [DOI] [PubMed] [Google Scholar]
  18. Hall C. M., Schechter N. Expression of neuronal intermediate filament proteins ON1 and ON2 during goldfish optic nerve regeneration: effect of tectal ablation. Neuroscience. 1991;41(2-3):695–701. doi: 10.1016/0306-4522(91)90360-z. [DOI] [PubMed] [Google Scholar]
  19. Hayes W. P., Meyer R. L. Normal numbers of retinotectal synapses during the activity-sensitive period of optic regeneration in goldfish: HRP-EM evidence implicating synapse rearrangement and collateral elimination during map refinement. J Neurosci. 1989 Apr;9(4):1400–1413. doi: 10.1523/JNEUROSCI.09-04-01400.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hemmati-Brivanlou A., Mann R. W., Harland R. M. A protein expressed in the growth cones of embryonic vertebrate neurons defines a new class of intermediate filament protein. Neuron. 1992 Sep;9(3):417–428. doi: 10.1016/0896-6273(92)90180-l. [DOI] [PubMed] [Google Scholar]
  21. Herrmann H., Fouquet B., Franke W. W. Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development. 1989 Feb;105(2):279–298. doi: 10.1242/dev.105.2.279. [DOI] [PubMed] [Google Scholar]
  22. Herrmann H., Hofmann I., Franke W. W. Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. J Mol Biol. 1992 Feb 5;223(3):637–650. doi: 10.1016/0022-2836(92)90980-x. [DOI] [PubMed] [Google Scholar]
  23. Hitchcock P. F., Easter S. S., Jr Retinal ganglion cells in goldfish: a qualitative classification into four morphological types, and a quantitative study of the development of one of them. J Neurosci. 1986 Apr;6(4):1037–1050. doi: 10.1523/JNEUROSCI.06-04-01037.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jackson B. W., Grund C., Winter S., Franke W. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos. Differentiation. 1981;20(3):203–216. doi: 10.1111/j.1432-0436.1981.tb01177.x. [DOI] [PubMed] [Google Scholar]
  25. Johns P. R., Easter S. S., Jr Growth of the adult goldfish eye. II. Increase in retinal cell number. J Comp Neurol. 1977 Dec 1;176(3):331–341. doi: 10.1002/cne.901760303. [DOI] [PubMed] [Google Scholar]
  26. Jones P. S., Schechter N. Distribution of specific intermediate-filament proteins in the goldfish retina. J Comp Neurol. 1987 Dec 1;266(1):112–121. doi: 10.1002/cne.902660109. [DOI] [PubMed] [Google Scholar]
  27. Jones P. S., Tesser P., Borchert J., Schechter N. Monoclonal antibodies differentiate neurofilament and glial filament proteins in the goldfish visual pathway: probes for monitoring neurite outgrowth from retinal explants. J Neurosci. 1989 Feb;9(2):454–465. doi: 10.1523/JNEUROSCI.09-02-00454.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones P. S., Tesser P., Keyser K. T., Quitschke W., Samadi R., Karten H. J., Schechter N. Immunohistochemical localization of intermediate filament proteins of neuronal and nonneuronal origin in the goldfish optic nerve: specific molecular markers for optic nerve structures. J Neurochem. 1986 Oct;47(4):1226–1234. doi: 10.1111/j.1471-4159.1986.tb00744.x. [DOI] [PubMed] [Google Scholar]
  29. Kaplan M. P., Chin S. S., Fliegner K. H., Liem R. K. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci. 1990 Aug;10(8):2735–2748. doi: 10.1523/JNEUROSCI.10-08-02735.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kaprielian Z., Patterson P. H. Surface and cytoskeletal markers of rostrocaudal position in the mammalian nervous system. J Neurosci. 1993 Jun;13(6):2495–2508. doi: 10.1523/JNEUROSCI.13-06-02495.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Klymkowsky M. W., Bachant J. B., Domingo A. Functions of intermediate filaments. Cell Motil Cytoskeleton. 1989;14(3):309–331. doi: 10.1002/cm.970140302. [DOI] [PubMed] [Google Scholar]
  32. Lane W. S., Galat A., Harding M. W., Schreiber S. L. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J Protein Chem. 1991 Apr;10(2):151–160. doi: 10.1007/BF01024778. [DOI] [PubMed] [Google Scholar]
  33. Lendahl U., Zimmerman L. B., McKay R. D. CNS stem cells express a new class of intermediate filament protein. Cell. 1990 Feb 23;60(4):585–595. doi: 10.1016/0092-8674(90)90662-x. [DOI] [PubMed] [Google Scholar]
  34. Levine E. M., Schechter N. Homeobox genes are expressed in the retina and brain of adult goldfish. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2729–2733. doi: 10.1073/pnas.90.7.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Meyer R. L. Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp Neurol. 1978 Mar;59(1):99–111. doi: 10.1016/0014-4886(78)90204-2. [DOI] [PubMed] [Google Scholar]
  36. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  37. Pachter J. S., Liem R. K. The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol. 1984 May;103(1):200–210. doi: 10.1016/0012-1606(84)90021-6. [DOI] [PubMed] [Google Scholar]
  38. Quax W., Egberts W. V., Hendriks W., Quax-Jeuken Y., Bloemendal H. The structure of the vimentin gene. Cell. 1983 Nov;35(1):215–223. doi: 10.1016/0092-8674(83)90224-6. [DOI] [PubMed] [Google Scholar]
  39. Quitschke W., Francis A., Schechter N. Electrophoretic analysis of specific proteins in the regenerating goldfish retinotectal pathway. Brain Res. 1980 Nov 17;201(2):347–360. doi: 10.1016/0006-8993(80)91039-2. [DOI] [PubMed] [Google Scholar]
  40. Quitschke W., Jones P. S., Schechter N. Survey of intermediate filament proteins in optic nerve and spinal cord: evidence for differential expression. J Neurochem. 1985 May;44(5):1465–1476. doi: 10.1111/j.1471-4159.1985.tb08784.x. [DOI] [PubMed] [Google Scholar]
  41. Quitschke W., Schechter N. 58,000 dalton intermediate filament proteins of neuronal and nonneuronal origin in the goldfish visual pathway. J Neurochem. 1984 Feb;42(2):569–576. doi: 10.1111/j.1471-4159.1984.tb02715.x. [DOI] [PubMed] [Google Scholar]
  42. Quitschke W., Schechter N. Homology and diversity between intermediate filament proteins of neuronal and nonneuronal origin in goldfish optic nerve. J Neurochem. 1986 Feb;46(2):545–555. doi: 10.1111/j.1471-4159.1986.tb13002.x. [DOI] [PubMed] [Google Scholar]
  43. Riemer D., Dodemont H., Weber K. Analysis of the cDNA and gene encoding a cytoplasmic intermediate filament (IF) protein from the cephalochordate Branchiostoma lanceolatum; implications for the evolution of the IF protein family. Eur J Cell Biol. 1992 Jun;58(1):128–135. [PubMed] [Google Scholar]
  44. SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schmidt J. T., Edwards D. L., Stuermer C. The re-establishment of synaptic transmission by regenerating optic axons in goldfish: time course and effects of blocking activity by intraocular injection of tetrodotoxin. Brain Res. 1983 Jun 13;269(1):15–27. doi: 10.1016/0006-8993(83)90958-7. [DOI] [PubMed] [Google Scholar]
  46. Shaw G., Weber K. Differential expression of neurofilament triplet proteins in brain development. Nature. 1982 Jul 15;298(5871):277–279. doi: 10.1038/298277a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  48. Sternini C., Anderson K., Frantz G., Krause J. E., Brecha N. Expression of substance P/neurokinin A-encoding preprotachykinin messenger ribonucleic acids in the rat enteric nervous system. Gastroenterology. 1989 Aug;97(2):348–356. doi: 10.1016/0016-5085(89)90070-x. [DOI] [PubMed] [Google Scholar]
  49. Stuermer C. A., Easter S. S., Jr A comparison of the normal and regenerated retinotectal pathways of goldfish. J Comp Neurol. 1984 Feb 10;223(1):57–76. doi: 10.1002/cne.902230106. [DOI] [PubMed] [Google Scholar]
  50. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  51. Tesser P., Jones P. S., Schechter N. Elevated levels of retinal neurofilament mRNA accompany optic nerve regeneration. J Neurochem. 1986 Oct;47(4):1235–1243. doi: 10.1111/j.1471-4159.1986.tb00745.x. [DOI] [PubMed] [Google Scholar]
  52. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Troy C. M., Brown K., Greene L. A., Shelanski M. L. Ontogeny of the neuronal intermediate filament protein, peripherin, in the mouse embryo. Neuroscience. 1990;36(1):217–237. doi: 10.1016/0306-4522(90)90364-a. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES