Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Mar 15;13(6):1249–1254. doi: 10.2210/pdb1ris/pdb

Crystal structure of the ribosomal protein S6 from Thermus thermophilus.

M Lindahl 1, L A Svensson 1, A Liljas 1, S E Sedelnikova 1, I A Eliseikina 1, N P Fomenkova 1, N Nevskaya 1, S V Nikonov 1, M B Garber 1, T A Muranova 1, et al.
PMCID: PMC394938  PMID: 8137808

Abstract

The amino acid sequence and crystal structure of the ribosomal protein S6 from the small ribosomal subunit of Thermus thermophilus have been determined. S6 is a small protein with 101 amino acid residues. The 3D structure, which was determined to 2.0 A resolution, consists of a four-stranded anti-parallel beta-sheet with two alpha-helices packed on one side. Similar folding patterns have been observed for other ribosomal proteins and may suggest an original RNA-interacting motif. Related topologies are also found in several other nucleic acid-interacting proteins and based on the assumption that the structure of the ribosome was established early in the molecular evolution, the possibility that an ancestral RNA-interacting motif in ribosomal proteins is the evolutionary origin for the nucleic acid-interacting domain in large classes of ribonucleic acid binding proteins should be considered.

Full text

PDF
1249

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Sieker L. C., Jensen L. H. Structure of a bacterial ferredoxin. J Biol Chem. 1973 Jun 10;248(11):3987–3996. [PubMed] [Google Scholar]
  2. Capel M. S., Engelman D. M., Freeborn B. R., Kjeldgaard M., Langer J. A., Ramakrishnan V., Schindler D. G., Schneider D. K., Schoenborn B. P., Sillers I. Y. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science. 1987 Dec 4;238(4832):1403–1406. doi: 10.1126/science.3317832. [DOI] [PubMed] [Google Scholar]
  3. Dumas C., Lascu I., Moréra S., Glaser P., Fourme R., Wallet V., Lacombe M. L., Véron M., Janin J. X-ray structure of nucleoside diphosphate kinase. EMBO J. 1992 Sep;11(9):3203–3208. doi: 10.1002/j.1460-2075.1992.tb05397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eriksson P. O., Sahlman L. 1H NMR studies of the mercuric ion binding protein MerP: sequential assignment, secondary structure and global fold of oxidized MerP. J Biomol NMR. 1993 Nov;3(6):613–626. doi: 10.1007/BF00198367. [DOI] [PubMed] [Google Scholar]
  5. Golden B. L., Ramakrishnan V., White S. W. Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein. EMBO J. 1993 Dec 15;12(13):4901–4908. doi: 10.1002/j.1460-2075.1993.tb06184.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gouaux J. E., Stevens R. C., Lipscomb W. N. Crystal structures of aspartate carbamoyltransferase ligated with phosphonoacetamide, malonate, and CTP or ATP at 2.8-A resolution and neutral pH. Biochemistry. 1990 Aug 21;29(33):7702–7715. doi: 10.1021/bi00485a020. [DOI] [PubMed] [Google Scholar]
  7. Gribskov M., Burgess R. R. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Res. 1986 Aug 26;14(16):6745–6763. doi: 10.1093/nar/14.16.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hegde R. S., Grossman S. R., Laimins L. A., Sigler P. B. Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature. 1992 Oct 8;359(6395):505–512. doi: 10.1038/359505a0. [DOI] [PubMed] [Google Scholar]
  9. Held W. A., Ballou B., Mizushima S., Nomura M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974 May 25;249(10):3103–3111. [PubMed] [Google Scholar]
  10. Hitz H., Schafer D., Wittmann-Liebold B. Primary structure of ribosomal protein S6 from the wild type and a mutant of Escherichia coli. FEBS Lett. 1975 Aug 15;56(2):259–262. doi: 10.1016/0014-5793(75)81105-7. [DOI] [PubMed] [Google Scholar]
  11. Hoffman D. W., Davies C., Gerchman S. E., Kycia J. H., Porter S. J., White S. W., Ramakrishnan V. Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 1994 Jan 1;13(1):205–212. doi: 10.1002/j.1460-2075.1994.tb06250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman D. W., Query C. C., Golden B. L., White S. W., Keene J. D. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495–2499. doi: 10.1073/pnas.88.6.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jessen T. H., Oubridge C., Teo C. H., Pritchard C., Nagai K. Identification of molecular contacts between the U1 A small nuclear ribonucleoprotein and U1 RNA. EMBO J. 1991 Nov;10(11):3447–3456. doi: 10.1002/j.1460-2075.1991.tb04909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  15. Jue R. A., Woodbury N. W., Doolittle R. F. Sequence homologies among E. coli ribosomal proteins: evidence for evolutionarily related groupings and internal duplications. J Mol Evol. 1980 May;15(2):129–148. doi: 10.1007/BF01732666. [DOI] [PubMed] [Google Scholar]
  16. Kahan L., Winkelmann D. A., Lake J. A. Ribosomal proteins S3, S6, S8 and S10 of Escherichia coli localized on the external surface of the small subunit by immune electron microscopy. J Mol Biol. 1981 Jan 5;145(1):193–214. doi: 10.1016/0022-2836(81)90340-5. [DOI] [PubMed] [Google Scholar]
  17. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1276–1282. doi: 10.1073/pnas.67.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  19. Leijonmarck M., Appelt K., Badger J., Liljas A., Wilson K. S., White S. W. Structural comparison of the prokaryotic ribosomal proteins L7/L12 and L30. Proteins. 1988;3(4):243–251. doi: 10.1002/prot.340030405. [DOI] [PubMed] [Google Scholar]
  20. Leijonmarck M., Eriksson S., Liljas A. Crystal structure of a ribosomal component at 2.6 A resolution. Nature. 1980 Aug 21;286(5775):824–826. doi: 10.1038/286824a0. [DOI] [PubMed] [Google Scholar]
  21. Mattaj I. W. A binding consensus: RNA-protein interactions in splicing, snRNPs, and sex. Cell. 1989 Apr 7;57(1):1–3. doi: 10.1016/0092-8674(89)90164-5. [DOI] [PubMed] [Google Scholar]
  22. Nagai K., Oubridge C., Jessen T. H., Li J., Evans P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 1990 Dec 6;348(6301):515–520. doi: 10.1038/348515a0. [DOI] [PubMed] [Google Scholar]
  23. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
  24. Orengo C. A., Thornton J. M. Alpha plus beta folds revisited: some favoured motifs. Structure. 1993 Oct 15;1(2):105–120. doi: 10.1016/0969-2126(93)90026-d. [DOI] [PubMed] [Google Scholar]
  25. Pastore A., Saudek V., Ramponi G., Williams R. J. Three-dimensional structure of acylphosphatase. Refinement and structure analysis. J Mol Biol. 1992 Mar 20;224(2):427–440. doi: 10.1016/0022-2836(92)91005-a. [DOI] [PubMed] [Google Scholar]
  26. Prakash V., Aune K. C. Molecular interactions between ribosomal proteins: a study of the S6-S18 interaction. Arch Biochem Biophys. 1978 Apr 30;187(2):399–405. doi: 10.1016/0003-9861(78)90050-4. [DOI] [PubMed] [Google Scholar]
  27. Ramakrishnan V., White S. W. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature. 1992 Aug 27;358(6389):768–771. doi: 10.1038/358768a0. [DOI] [PubMed] [Google Scholar]
  28. Schnier J., Kitakawa M., Isono K. The nucleotide sequence of an Escherichia coli chromosomal region containing the genes for ribosomal proteins S6, S18, L9 and an open reading frame. Mol Gen Genet. 1986 Jul;204(1):126–132. doi: 10.1007/BF00330199. [DOI] [PubMed] [Google Scholar]
  29. Sedelnikova S. E., Agalarov S. Ch, Eliseikina I. A., Fomenkova N. P., Nikonov S. V., Garber M. B., Svensson L. A., Liljas A. Crystals of protein S6 from the 30 S ribosomal subunit of Thermus thermophilus. J Mol Biol. 1991 Aug 5;220(3):549–550. doi: 10.1016/0022-2836(91)90098-q. [DOI] [PubMed] [Google Scholar]
  30. Sousa R., Chung Y. J., Rose J. P., Wang B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12;364(6438):593–599. doi: 10.1038/364593a0. [DOI] [PubMed] [Google Scholar]
  31. Stöffler G., Stöffler-Meilicke M. Immunoelectron microscopy of ribosomes. Annu Rev Biophys Bioeng. 1984;13:303–330. doi: 10.1146/annurev.bb.13.060184.001511. [DOI] [PubMed] [Google Scholar]
  32. Wilson K. S., Appelt K., Badger J., Tanaka I., White S. W. Crystal structure of a prokaryotic ribosomal protein. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7251–7255. doi: 10.1073/pnas.83.19.7251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wittmann-Liebold B., Ashman K., Dzionara M. On the statistical significance of homologous structures among the Escherichia coli ribosomal proteins. Mol Gen Genet. 1984;196(3):439–448. doi: 10.1007/BF00436191. [DOI] [PubMed] [Google Scholar]
  34. Wittmann H. G. Components of bacterial ribosomes. Annu Rev Biochem. 1982;51:155–183. doi: 10.1146/annurev.bi.51.070182.001103. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES