Skip to main content
Bulletin of the World Health Organization logoLink to Bulletin of the World Health Organization
. 2014 Feb 1;92(2):99–107A. doi: 10.2471/BLT.13.120287

The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis

Influence de la déréglementation du marché sur la consommation de services de restauration rapide et sur l'indice de masse corporelle: analyse d'une série chronologique transnationale

La influencia de la desregulación del mercado en el consumo de comida rápida y el índice de masa corporal: un análisis de series temporales entre países

تأثير إلغاء القيود التنظيمية للسوق على استهلاك الأغذية السريعة ومنسب كتلة الجسم: تحليل السلسلة الزمنية عبر الوطنية

市场放宽管制对快餐消费和体重指数的影响:跨国时间序列分析

Влияние отмены государственного регулирования рынка на потребление блюд быстрого питания и на индекс массы тела: межнациональный анализ временных рядов

Roberto De Vogli a,, Anne Kouvonen b, David Gimeno c
PMCID: PMC3949530  PMID: 24623903

Abstract

Objective

To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI.

Methods

The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI.

Findings

After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045).

Conclusion

Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.

Introduction

In the last decades, there have been substantial increases in mean body weight in wealthy countries.1,2 Such changes accompanied dramatic transformations in people’s dietary patterns, most notably an increase in the consumption of ultra-processed foods, including fast food,3 herein defined as “food that can be prepared quickly and easily and is sold in restaurants and snack bars as a quick meal or to be taken out”.4

Although some authors argue that fast food consumption has played a negligible role in the obesity epidemic,5,6 numerous studies have shown the opposite to be true.7,8 A cohort study by Pereira et al. showed that participants who visited fast food restaurants more than twice a week at baseline and were still doing so at a follow-up 15 years later had gained an average of 4.5 kg.9 Significant associations between the density of fast food restaurants and obesity have also been shown by neighbourhood-1012 and state-level analyses.1315 So far, little cross-national research has been conducted to investigate whether the spread of fast food has led to an increase in population-wide obesity rates over time.16,17 However, in a recent ecological analysis, the density of Subway outlets, used as a marker of fast food penetration, was positively associated with the prevalence of obesity across 26 advanced economies.18 Another cross-national ecological analysis revealed an association between increases in soft drink consumption and higher rates of overweight and obesity.19 The research conducted to date has revealed little about the factors that drive or contain the spread of fast food and obesity.16 Some authors argue that the rising consumption of unhealthy foods seen worldwide has been facilitated by trade liberalization20 and foreign investment in the food and beverage industries,8,2123 which have resulted in the proliferation of large transnational food companies.20,24,25 Offer et al. have found that high-income countries with market-liberal welfare regimes – most of which are also English-speaking – have a higher prevalence of obesity and easier access to fast food.17 A study by Cutler et al. has shown that regulations in the agricultural sector are negatively correlated with obesity.26

In this article we use a novel measure – the number of per capita fast food transactions (local and transnational) – to test the hypothesis that rising fast food consumption has been a major determinant of population increases in body mass index (BMI) among high-income countries belonging to the Organisation for Economic Co-operation and Development (OECD). We also examine whether market deregulation may have contributed to higher BMI by facilitating the spread of fast food.

Methods

We conducted multivariate panel data analyses of 25 high-income OECD countries over the period from 1999 to 2008. Data on fast food consumption and age-standardized mean BMI were available for only 27 of the 31 high-income OECD members. Such data were missing for Estonia, Iceland, Luxembourg and Slovenia. To limit biases in international comparisons between Asians and Caucasians due to different interpretations of BMI in Asian populations,27 we excluded Japan and the Republic of Korea. However, we ran additional analyses including these countries as robustness checks. We also developed separate models excluding Anglo-Saxon economies (Australia, Canada, Ireland, New Zealand, the United Kingdom of Great Britain and Northern Ireland and the United States of America) that, as previous studies showed, have a higher prevalence of obesity and easier access to fast food.17

Data sources

Fast food consumption

Data on per capita fast food transactions were taken from Euromonitor’s Passport Global Market Information Database (GMID), 2012 edition. The data comprise industry records of annual sales of meals and refreshments delivered in local and transnational fast food outlets,28 including chain restaurants, independent eateries and convenience stores (Appendix A, available at: http://goo.gl/36c7ai). This measure is the most comprehensive indicator of fast food consumption for comparisons across nations. Appendix B (available at: http://goo.gl/gThiG5) shows the scatterplot and strong correlation coefficient (r = 0.8501; P < 0.001) for the association between fast food transactions per capita, as obtained from the GMID, and Subway restaurants per 100 000 population, an indicator used in a previous paper as a proxy measure of the density of fast food restaurants at the country level.18

Age-standardized mean body mass index

Our main dependent variable, age-standardized mean BMI (in kg/m2), was obtained from the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group, which produced comparative estimates of cross-country differences and changes over time in BMI for adults aged 20 years or older.1 Although data on BMI are reported separately for men and women, we developed an overall indicator by estimating the female to male ratio using the proportion of female population from the World Development Indicators from 1999 to 2008.29 We also ran sex-specific analyses as robustness assessments.

Market deregulation

Market deregulation is the degree to which market forces are allowed to operate without interference from outside intervention, especially in the form of government ownership, regulations and taxes.30 We used the index of economic freedom (IEF) created by the Heritage Foundation and the Wall Street Journal, which is based on a scale from 1 to 100. The score indicates the extent to which a country has adopted market deregulation policies. The index is calculated as the mean of 10 subcomponents measuring different aspects of economic freedom, as determined from national laws and regulations as well as written questionnaires completed by experts and investors (Appendix C, available at: http://goo.gl/M76H7I).31

Covariates

We included in our analyses several potential confounders of the association between fast food and BMI: gross domestic product (GDP) per capita (expressed logarithmically in constant 2005 United States dollars, adjusted for purchasing power parity for comparability between countries); the proportion of the population living in urban areas; national population size; openness to trade (imports and exports as a percentage of GDP); foreign direct investment (FDI, or net inflows as a percentage of GDP); and a time-invariant (2008) measure of motor vehicles per 1000 people. All these measures were taken from the World Bank’s World Development Indicators database.29 We also included as confounders time-invariant measures (2008) of the percentage of the population doing insufficient physical activity (i.e. less than 30 minutes of moderate activity five times per week or less than 20 minutes of vigorous activity three times per week, or their equivalent) and consumption of fruits and vegetables (in kilograms per capita per year) in 2008. These two values were obtained from the World Health Organization Global Infobase32 and from the GMID, respectively.28 Finally, as previous studies have revealed that obesity and the availability of cheap, energy-dense food tend to be higher in societies with greater economic inequality,33,34 we adjusted for the Gini index, a measure of inequality in household disposable income. Data on the Gini index were taken from the Standardized World Income Inequality Database.35,36

Our analyses also include three potential mediators of the association between fast food and BMI: consumption of animal fats (in kcal per capita per day); total caloric intake (in kcal per capita per day); and soft drink consumption (in litres per capita per year). The first two values were obtained from the Statistics Division of the Food and Agriculture Organization;37 the last one came from the GMID.28

Statistical analyses

To study the association between fast food consumption and BMI we used longitudinal panel analyses, which allow the dynamics of change over time to be explored.38 Our regression models included corrections for fixed aspects of initial country conditions and other characteristics that could influence the level of fast food consumption – and hence average BMI – in a given country.39,40 By assessing within-country annual variations in fast food and obesity over time and adjusting for fixed, country-level characteristics, these conservative models effectively address the problem of confounding of study results. Robust standard errors –– clustered by region to adjust for the non-independence of time series data – were calculated in all models.8 Regressions were analysed using Stata version 12.0 (StataCorp. LP, College Station, United States of America).

We formulated the following fixed effects models:

graphic file with name BLT.13.120287-M1.jpg (1)
graphic file with name BLT.13.120287-M2.jpg (2)

where i is the country, t is the year, β1 is the regression coefficient for per capita fast food transactions, β2 is the regression coefficient for GDP, υi is an error term denoting country-specific heterogeneity, εit indicates an identically distributed random error term or measurement error and α is a constant.

Results

Fast food consumption and BMI

As shown in Table 1 (available at: http://www.who.int/bulletin/volumes/92/2/13-120287), between 1999 and 2008, the average number of annual fast food transactions per capita increased from 26.61 to 32.76. During the same period, age-standardized mean BMI increased from 25.8 to 26.4 kg/m2. There was a strong and positive association between fast food consumption and age-standardized mean BMI (unadjusted r = 0.658; P < 0.001). When considering changes between 1999 and 2008 (Fig. 1), the average annual number of fast food transactions per capita was positively associated with age-standardized mean BMI (unadjusted r = 0.503; P < 0.01). The highest increases in the average number of annual fast food transactions per capita were observed in Canada (16.6), Australia (14.7), Ireland (12.3) and New Zealand (10.1), while the lowest increases occurred in Italy (1.5), Greece (1.9), the Netherlands (1.8) and Belgium (2.1).

Table 1. Age-standardized mean body mass index (BMI), per capita fast food transactions and other covariates in 25 high-income countries of the Organisation for Economic Co-operation and Development, 1999, 2002, 2005, 2008.

Variable 1999
2002
2005
2008
Mean SD Range Mean SD Range Mean SD Range Mean SD Range
Age-standardized mean BMI (kg/m2) 25.84 0.66 24.87–27.50 26.04 0.71 24.94–27.82 26.23 0.75 25.01–28.13 26.44 0.79 25.11–28.39
Fast food transactions, no.a 26.61 27.27 6.9–109.5 28.56 28.38 9.1–114.10 30.68 29.49 10.5–121.70 32.76 30.20 12.13–126.10
GDP per capitab 26 045.57 7853.44 11 212.92–42 866.46 27 966.32 7979.83 12 137.23–45050.22 29 665.49 8071.49 13 784.16–47 626.28 31 272.20 7792.31 16 454.81–48583.24
Per cent urban population 74.01 11.78 53.74–97.04 74.47 11.69 55.68–97.18 74.96 11.58 56.2–97.30 75.50 11.44 56.56–97.36
Population size (millions) 31.60 56.10 3.7–279.00 32.30 57.70 3.9–287.80 32.90 59.2 4.10–295.70 33.70 60.8 4.26–304.30
Openness to tradec 78.72 34.49 24.09–164.58 82.75 37.07 22.97–170.77 86.72 37.76 26.49–157.16 94.88 41.58 30.79–169.09
FDId 13.00 7.35 1.00–25.00 4.02 3.12 −0.56–12.97 2.03 3.34 −5.88–12.28 7.97 10.49 0.64–52.05
IEFe 67.63 6.89 54.20–81.70 70.00 6.75 58.00–80.70 69.86 7.28 59.00–82.30 72.12 7.08 60.30–82.50
Intake of soft drinksf 133.69 40.80 74.40–231.00 148.64 43.35 79.40–241.80 159.49 44.84 88.00–258.00 167.24 42.45 100.30–259.50
Intake of animal fatg 212.25 105.47 26.00–439.00 218.20 108.46 28.00–426.00 208.76 104.61 30.00–421.00 205.56 101.84 31.00–401.00
Total caloric intakeg 3392.29 238.25 2876.00–3791.00 3432.04 251.66 2794.00–3829.00 3426.52 225.21 2843.00–3799.00 3437.04 225.02 2866.00–3826.00

FDI, foreign direct investment; GDP, gross domestic product; GMID, Global Market Information Database; IEF, index of economic freedom; SD, standard deviation.

a Meals and refreshments sold annually per capita in local and transnational fast food outlets, including chain restaurants, independent eateries and convenience stores.

b In constant 2005 United States dollars, adjusted for purchasing power parity for comparability between countries.

c Imports and exports as a percentage of GDP.

d Net inflows as a percentage of GDP.

e Created by the Heritage Foundation and the Wall Street Journal.31

f In litres per capita per year.

g In kcal per capita per day.

Sources: Age-standardized mean BMI: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group;1 annual fast food transactions per capita: Euromonitor’s Passport Global Market Information Database (GMID);28 GDP per capita, percentage of the population living in urban areas, national population size, openness to trade and FDI: World Bank’s World Development Indicators database;29 intake of soft drinks: GMID;28 intake of animal fat and total caloric intake: Statistics Division of the Food and Agriculture Organization.37

Fig. 1.

Change in age-standardized mean body mass index (BMI) as a function of change in average annual fast food transactions per capitaa in 25 high-income countries of the Organisation for Economic Co-operation and Development, 1999–2008

United Kingdom, United Kingdom of Great Britain and Northern Ireland; United States, United States of America.

a Meals and refreshments sold annually per capita in local and transnational fast food outlets, including chain restaurants, independent eateries and convenience stores.

Note: The figure illustrates the positive correlation between changes in age-standardized mean BMI and changes in the number of annual fast food transactions per capita between 1999­ and 2008.

Sources: Age-standardized mean BMI: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group;1 average annual fast food transactions per capita: Euromonitor’s Passport Global Market Information Database.28

Fig. 1

Table 2 presents the results of multivariate panel analyses in which age-standardized mean BMI was the dependent variable. Fast food consumption was positively and significantly associated with BMI (unadjusted β: 0.0657; 95% confidence interval, CI: 0.0433–0.0881). After correcting for income, urbanization, population size, openness to trade and FDI, the estimated relationship weakened but remained strongly significant (β: 0.0329; 95% CI: 0.0136–0.0522), so that each 1-unit increase in the average number of annual fast food transactions per capita was associated with an increase of 0.0329 kg/m2 in age-standardized BMI.

Table 2. Associations between fast food consumption and age-standardized body mass index (BMI) before and after adjustment for selected covariates, 1999–2008.

Variable Age-standardized mean BMI
Model 1a Model 2a Model 3a Model 4a Model 5a Model 6a
Fast food transactions,b β (95% CI) 0.0657 (0.0433–0.0881) 0.0329 (0.0136–0.0522) 0.0907 (0.069–0.112) 0.042 (0.0249–0.0597) 0.06 (0.0439–0.0845) 0.0316 (0.0134–0.0498)
Log GDP per capita,c β (95% CI) 0.933 (0.4899–1.3774) 0.643 (0.2112–1.0762) 0.879 (0.4340–1.3257)
Per cent urban population 0.0856 (0.0551–0.1161) 0.07 (0.0483–0.0975) 0.0828 (0.0571–0.1086)
Population size 0.0116 (−0.0002–0.0236) 0.0514 (0.0121–0.0905) 0.0129 (0.0019–0.0239)
Openness to traded 0.0006 (−0.0021–0.0035) 0.0011 (−0.0016–0.0039) 0.0004 (−0.0026–0.0035)
FDIe −0.001 (−0.0033–0.00005) −0.0009 (−0.0032–0.0013) −0.0011 (−0.0037–0.0015)
No. of country–years 250 245 190 186 270 265

CI, confidence interval; FDI, foreign direct investment; GDP, gross domestic product.

a Model 1: all countries, unadjusted; Model 2: all countries, adjusted; Model 3: all countries except Anglo-Saxon economies (i.e. Australia, Canada, Ireland, New Zealand, the United Kingdom of Great Britain and Northern Ireland and the United States of America), unadjusted; Model 4: all countries except Anglo-Saxon economies, adjusted; Model 5: all countries plus Asian countries (i.e. Japan and the Republic of Korea), unadjusted; Model 6: all countries except Asian countries, adjusted.

b Meals and refreshments sold annually per capita in local and transnational fast food outlets, including chain restaurants, independent eateries and convenience stores.

c In constant 2005 United States dollars, adjusted for purchasing power parity for comparability between countries.

d Imports and exports as a percentage of GDP.

e Net inflows as a percentage of GDP.

Note: The table displays the increase in age-standardized mean BMI associated with a 1-unit increase in annual fast food transactions per capita and in other covariates and with a 10% increase in GDP per capita. All models used robust standard errors clustered by country to reflect non-independence of sampling and robustness to heteroskedasticity and serial correlation. The covariates that were adjusted for in Model 2, Model 4 and Model 6 were GDP per capita, urbanization, openness to trade, FDI and population size.

Sources: Age-standardized mean BMI: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group;1 annual fast food transactions per capita: Euromonitor’s Passport Global Market Information Database;28 GDP per capita, percentage of the population living in urban areas, national population size, openness to trade and FDI: World Bank’s World Development Indicators database.29

Robustness checks

Before analysing the influence of market deregulation and the possible mediators between fast food consumption and BMI, we performed a series of robustness checks. When we excluded Anglo-Saxon economies from the model while controlling for the same confounders, we found no significant differences in the magnitude of the association between fast food consumption and BMI (P > 0.05 when testing effect heterogeneity). Similar results were found when we included Asian countries in the models. We then used first-difference methods to estimate the same basic model developed in Table 2, results confirmed the robustness of the fixed effects estimates (β: 0.0148; 95% CI: 0.0017–0.0279). We also disaggregated the analysis by sex and found no significant differences between males (β: 0.0294; 95% CI: 0.0077–0.0512) and females (β: 0.0360; 95% CI: 0.0183–0.0537) in the size of the estimated association (P > 0.05 when testing for effect heterogeneity). Similar results were obtained when we used per capita transactions only at chain food service outlets as an alternative measure of fast food consumption (β: 0.0271; 95% CI: 0.0114–0.0427). After the inclusion of three additional covariates – insufficient physical activity, motor vehicle use per 1000 people and fruit and vegetable consumption – the association between fast food and BMI remained statistically significant (β: 0.0140; 95% CI: 0.0058–0.0222). Finally, when we included the Gini index of within country income inequality in the model, the association between fast food consumption and BMI remained strongly significant (β: 0.0293; 95% CI: 0.0130–0.0456).

Soft drinks, animal fats and total calories

Table 3 shows the results of a series of separate regression models using mediators known to be associated with both fast food consumption and BMI. If the association between fast food consumption and BMI is mediated by soft drinks, animal fats and total calories, as we hypothesized, holding these mediators constant should attenuate the observed relationship. Only soft drink consumption, however, appeared to be a plausible partial mediator, by slightly reducing the effect size of the association between fast food consumption and BMI, after correcting for covariates (β: 0.0302; 95% CI: 0.0101–0.0504). Neither the intake of animal fats nor total caloric intake changed the effect size of the observed relationship substantially.

Table 3. Soft drink, animal fats and total calorie intake as mediators of the association between fast food consumption and age-standardized mean body mass index (BMI), 1999–2008.
Variable Age-standardized mean BMI
Model 1a Model 2a Model 3a Model 4a Model 5a Model 6a
Fast food transactions,b β (95% CI) 0.0459 (0.0238–0.0680) 0.0302 (0.0101–0.0504) 0.0650 (0.0426–0.0874) 0.0328 (0.0135–0.0522) 0.0647 (0.0423–0.0871) 0.0327 (0.0131–0.0522)
Intake of soft drinks, β (95% CI) 0.0058 (0.0034–0.0082) 0.0026 (−0.0004–0.0057)
Intake of animal fats, β (95% CI) −0.0008 (−0.0018–0.0001) 0.0001 (−0.0004–0.0007)
Total caloric intake, β (95% CI) 0.0003 (−0.0002–0.0008) 0.0006 (−0.0002–0.0003)
Fraction of effect due to mediator, % 11.3 8.2 1.2 0.3 1.6 0.6
No. of country–years 250 245 249 244 249 244

CI, confidence interval; GDP, gross domestic product.

a Model 1, 3 and 5 are unadjusted. Models 2, 4 and 6 are additionally adjusted for log GDP per capita, percentage of population living in urban areas, national population size, openness to trade and foreign direct investment.

b Meals and refreshments sold annually per capita in local and transnational fast food outlets, including chain restaurants, independent eateries and convenience stores.

Note: The table displays the increase in age-standardized mean BMI associated with a 1-unit increase in average number of annual fast food transactions per capita, average intake of soft drinks (in litres per capita per year), average intake of animal fats (in kcal per capita per day) and average total caloric intake (in kcal per capita per day). Models corrected for country-specific fixed effects.

Sources: Age-standardized mean BMI: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group;1 annual fast food transactions per capita: EuroMonitor Passport Global Market Information Database (GMID);28 intake of soft drinks: GMID;28 intake of animal fats and total caloric intake: Statistics Division of the Food and Agriculture Organization.37

Market deregulation, fast food consumption and BMI

In spite of the robustness checks, our results could have been driven by third factors affecting both fast food consumption and BMI, such as changes in the macroeconomic environment. Although fixed effects models can cancel out the possible confounding effect of initial, time-invariant, country-specific characteristics, they do not correct for time-varying confounders. To address this problem, we employed two-stage least squares regression models using economic freedom as an instrumental variable. These models allowed us not only to put to further testing the robustness of the fixed-effects estimates in Table 2, but also to investigate the role of market deregulation as a determinant of BMI through fast food consumption. Instrumental variables are believed to simulate a natural experiment, and act as a randomization device in dealing with unobserved covariates that, in our case, may be correlated with both fast food consumption and BMI.41 Valid instruments have at least two major properties. First, they affect the exposure variable we want to test, in this case fast food consumption. Second, they must have no direct effect on the outcome measure, in our case BMI.41 Table 4 presents estimates of fixed-effects regression models investigating the associations between the IEF (market deregulation) and fast food consumption and BMI. After adjustment for fast food consumption, the association between the IEF and BMI weakened to non-significance (P > 0.05), qualifying the IEF as a valid instrument.

Table 4. Associations between the index of economic freedom (IEF)a and fast food consumption and age-standardized mean body mass index (BMI), 1999–2008.

Variable Fast food transactionsb (Model 1)c Age-standardized BMI
Unadjusted (Model 2)c Adjusted for fast food transactions (Model 3)c
IEF, β (95% CI) 0.5501 (0.0238–0.8610) 0.0396 (0.0224–0.0569) 0.0048 (−0.0094–0.0190)
No. of country–years 250 250 250

CI, confidence interval.

a Created by the Heritage Foundation and the Wall Street Journal.31

b Meals and refreshments sold annually per capita in local and transnational fast food outlets, including chain restaurants, independent eateries and convenience stores.

c The table displays the increase in annual fast food transactions per capita associated with a 1-unit increase in the IEF (Model 1), the increase in age-standardised BMI associated with a 1-unit increase in the IEF (Model 2), and the increase in age-standardised BMI associated with a 1-unit increase in the IEF after adjustment for annual fast food transactions per capita (Model 3).

Note: Models were corrected for country-specific fixed effects. All models used robust standard errors clustered by country to reflect non-independence of sampling and robustness to heteroskedasticity and serial correlation.

Sources: Age-standardized mean BMI: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group;1 average annual fast food transactions per capita: Euromonitor’s Passport Global Market Information Database.28

Table 5 shows the first-stage and two-stage least square regression models for the effect of fast food consumption on BMI, with the IEF used as an instrument, after adjustment for other covariates. The first-stage regression confirmed that market deregulation is a strong predictor of higher fast food consumption (β: 0.2714; 95% CI: 0.1644–0.3785), after correction for confounders. Each 1-unit increase in the IEF was associated with an increase of 0.2714 in the average number of per capita annual transactions at fast food outlets. The second-stage regression indicated that, when the IEF was used as an instrumental variable for fast food consumption and after correction for confounders, each 1-unit increase in fast food consumption was associated with an increase of 0.0232 kg/m2 in BMI (95% CI: 0.0011–0.0452).

Table 5. Association between fast food consumption and age-standardized body mass index (BMI) using the index of economic freedom (IEF) as an instrumental variable, 1999–2008.

Variable Fast food transactions,a first stage (Model 1) Age-standardized mean BMI, two-stage least squares (Model 2)
Fast food transactions, β (95% CI) 0.0232 (0.0011–0.0452)
IEF,b β (95% CI) 0.2714 (0.1644–0.3785)
No. of country–years 244 244

CI, confidence interval.

a Meals and refreshments sold annually per capita in local and transnational fast food outlets, including chain restaurants, independent eateries and convenience stores.

b Created by the Heritage Foundation and the Wall Street Journal.31

Note: The table displays the increase in annual fast food transactions per capita associated with a 1-unit increase in the IEF (Model 1), and the increase in age-standardized BMI associated with a 1-unit increase in the number of annual fast food transactions per capita (Model 2) when using the IEF as an instrument for such transactions. Models included country-specific fixed effects using the Stata 12.0 “xtivreg” command for two-stage least squares regression with panel data. Models were corrected for log gross domestic product (GDP) per capita (in constant 2005 United States dollars, adjusted for purchasing power parity), percentage of the population living in urban areas, national population size, openness to trade (imports and exports as a percentage of GDP), foreign direct investment (net inflows as a percentage of GDP), average intake of soft drinks (in litres per capita per year), average intake of animal fats (in kcal per capita per day) and average total caloric intake (in kcal per capita per day). All models used robust standard errors clustered by country to reflect non-independence of sampling and robustness to heteroskedasticity and serial correlation.

Sources: Age-standardized mean BMI: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group;1 average annual fast food transactions per capita: EuroMonitor Passport Global Market Information Database.28

Discussion

Our study shows that fast food consumption is independently and positively associated with mean BMI in high-income countries. While the consumption of soft drinks explains a small proportion of the variation in the association between fast food consumption and BMI, the intake of animal fats and total caloric intake do not seem to be significant mediators of the association. This is puzzling. The fat and calories in fast food meals are usually blamed for the unhealthful effect of fast food.42 Although we cannot exclude the possibility of measurement errors, factors other than calories and fat content may explain why fast food makes people fat. Researchers need to investigate, for example, the metabolic effects of long-term exposure to fast foods produced from the meat of animals fed on corn, kept in confinement and exposed to excessive fertilization.43 Researchers should also examine the health effects of a poor diet, which can lead not only to obesity but also to the development of noncommunicable diseases. More research is also needed to study the effects of the degree of processing of food items and not just their nutrient and caloric content.44

In line with previous research,17 our study shows that countries adopting what are considered market-liberal policies experience faster increases in both fast food consumption and mean BMI. These results are in accord with previous research showing that more stringent trade restrictions – including better protection of agricultural producers45 – the frequency of price controls26 and stricter government regulations46 are negatively correlated with obesity. The mechanisms explaining the influence of economic freedom on fast food and obesity have not been sufficiently studied. One possibility is that indiscriminate market deregulation favours global food chains at the expense of smaller farmers and local food systems.47 In effect, additional analyses (available from the corresponding author upon request) showed that, while per capita transactions at chain food service outlets were positively and significantly correlated with mean BMI, this was not the case for per capita transactions at independent food service outlets.

Our results must be interpreted with caution. First, the IEF reflects perceptual biases because it disproportionately relies on the perspective of investors and the business community.48 Moreover, it does not necessarily reflect the extent to which market deregulation is applied to the agricultural sector. Our data show, however, that the most “market-friendly countries, including Australia, Canada, New Zealand and the United States have less restrictive agricultural regulations and provide substantially lower farm subsidies than European countries such as France, Italy and Greece.45 Another limitation has to do with the dependent variable, age-standardized mean BMI, which is based on estimates from a Bayesian hierarchical model involving a complex dependence structure for which we could not adjust.1 In spite of this, the correlation between the BMI measure used in this study and obesity prevalence as obtained from the Global Health Observatory database was very strong. (r = 0.953; P < 0.001) (Appendix D, available at: http://goo.gl/ElLR0z) Although mean BMI may be a biased measure of overweight and obesity, especially because the prevalences of underweight and malnutrition can influence its interpretation, such bias is more likely to affect BMI estimates for low- and middle-income countries. Moreover, a continuous variable like BMI is a more practical indicator than a categorical variable such as obesity because its associations with most health outcomes are continuous, rather than characterized by a specific threshold. An additional limitation relates to the ecological and observational nature of the data. Although confounding can never be completely ruled out, our findings remained robust following numerous estimation methods and statistical checks. Finally, although the magnitude of the association between fast food consumption and BMI weakened substantially under instrumental variable specification, it remained statistically significant.

Conclusion

Our study provides novel findings on the association between fast food consumption and mean population BMI and on the influence of market deregulation as a contributor to higher fast food consumption and BMI. The study has important implications for policy. In particular, they suggest that government regulations hindering the spread of fast food consumption might help to mitigate the obesity epidemic. Indeed, although all countries included in our sample have experienced increases in fast food consumption and mean BMI over the period studied (1999–2008), nations that have adopted more stringent market regulations have experienced slower increases in both. More research is needed to confirm whether deregulation is a significant contributor to body weight and to determine what types of government interventions could mitigate the obesity epidemic and curb the spread of transnational fast food companies.

Acknowledgements

The authors thank David Stuckler and Sanjay Basu who provided feedback and suggestions on earlier versions of this manuscript.

Funding:

RDV is supported by a grant from the Economic and Social Research Council (RES-070-27-0034). No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests:

None declared.

References

  • 1.Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 2011;377:557–67. doi: 10.1016/S0140-6736(10)62037-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med. 2006;12:62–6. doi: 10.1038/nm0106-62. [DOI] [PubMed] [Google Scholar]
  • 3.Stuckler D, McKee M, Ebrahim S, Basu S. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. PLoS Med. 2012;9:e1001235. doi: 10.1371/journal.pmed.1001235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.New Oxford American dictionary. 3rd ed. Oxford: Oxford University Press; 2010. [Google Scholar]
  • 5.Sturm R, Datar A. Body mass index in elementary school children, metropolitan area food prices and food outlet density. Public Health. 2005;119:1059–68. doi: 10.1016/j.puhe.2005.05.007. [DOI] [PubMed] [Google Scholar]
  • 6.Anderson ML, Matsa DA. Are restaurants really supersizing America? Am Econ J Appl Econ. 2011;3:152–88. doi: 10.1257/app.3.1.152. [DOI] [Google Scholar]
  • 7.Reidpath DD, Burns C, Garrard J, Mahoney M, Townsend M. An ecological study of the relationship between social and environmental determinants of obesity. Health Place. 2002;8:141–5. doi: 10.1016/S1353-8292(01)00028-4. [DOI] [PubMed] [Google Scholar]
  • 8.French SA, Harnack L, Jeffery RW. Fast food restaurant use among women in the Pound of Prevention study: dietary, behavioral and demographic correlates. Int J Obes Relat Metab Disord. 2000;24:1353–9. doi: 10.1038/sj.ijo.0801429. [DOI] [PubMed] [Google Scholar]
  • 9.Pereira MA, Kartashov AI, Ebbeling CB, Van Horn L, Slattery ML, Jacobs DR, Jr, et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet. 2005;365:36–42. doi: 10.1016/S0140-6736(04)17663-0. [DOI] [PubMed] [Google Scholar]
  • 10.Cummins SC, McKay L, MacIntyre S. McDonald’s restaurants and neighborhood deprivation in Scotland and England. Am J Prev Med. 2005;29:308–10. doi: 10.1016/j.amepre.2005.06.011. [DOI] [PubMed] [Google Scholar]
  • 11.Block JP, Scribner RA, DeSalvo KB. Fast food, race/ethnicity, and income: a geographic analysis. Am J Prev Med. 2004;27:211–7. doi: 10.1016/j.amepre.2004.06.007. [DOI] [PubMed] [Google Scholar]
  • 12.Pearce J, Hiscock R, Blakely T, Witten K. A national study of the association between neighbourhood access to fast-food outlets and the diet and weight of local residents. Health Place. 2009;15:193–7. doi: 10.1016/j.healthplace.2008.04.003. [DOI] [PubMed] [Google Scholar]
  • 13.Maddock J. The relationship between obesity and the prevalence of fast food restaurants: state-level analysis. Am J Health Promot. 2004;19:137–43. doi: 10.4278/0890-1171-19.2.137. [DOI] [PubMed] [Google Scholar]
  • 14.Fantasia R. Fast food in France. Theory Society. 1995;24:201–43. doi: 10.1007/BF00993397. [DOI] [Google Scholar]
  • 15.DeBres K. Burgers for Britain: a cultural geography of McDonald's UK. J Cultural Geogr. 2005;22:115–39. doi: 10.1080/08873630509478241. [DOI] [Google Scholar]
  • 16.Rabin BA, Boehmer TK, Brownson RC. Cross-national comparison of environmental and policy correlates of obesity in Europe. Eur J Public Health. 2007;17:53–61. doi: 10.1093/eurpub/ckl073. [DOI] [PubMed] [Google Scholar]
  • 17.Offer A, Pechey R, Ulijaszek S. Obesity under affluence varies by welfare regimes: the effect of fast food, insecurity, and inequality. Econ Hum Biol. 2010;8:297–308. doi: 10.1016/j.ehb.2010.07.002. [DOI] [PubMed] [Google Scholar]
  • 18.De Vogli R, Kouvonen A, Gimeno D. ‘Globesization’: ecological evidence on the relationship between fast food outlets and obesity among 26 advanced economies. Crit Public Health. 2011;21:395–402. doi: 10.1080/09581596.2011.619964. [DOI] [Google Scholar]
  • 19.Basu S, McKee M, Galea G, Stuckler D. Relationship of soft drink consumption to global overweight, obesity and diabetes: a cross-national analysis of 75 countries. Am J Public Health. 2013:e1–7. doi: 10.2105/AJPH.2012.300974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Thow AM, Hawkes C. The implications of trade liberalization for diet and health: a case study from Central America. Global Health. 2009;5:5. doi: 10.1186/1744-8603-5-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rayner G, Hawkes C, Lang T, Bello W. Trade liberalization and the diet transition: a public health response. Health Promot Int. 2006;21(Suppl 1):67–74. doi: 10.1093/heapro/dal053. [DOI] [PubMed] [Google Scholar]
  • 22.Hawkes C. Uneven dietary development: linking the policies and processes of globalization with the nutrition transition, obesity and diet-related chronic diseases. Global Health. 2006;2:4. doi: 10.1186/1744-8603-2-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Dreher A, Gaston N, Martens P. Measuring globalisation: gauging its consequences New York: Springer; 2008. [Google Scholar]
  • 24.PLoS Medicine Editors PLoS Medicine series on Big Food: the food industry is ripe for scrutiny. PLoS Med. 2012;9:e1001246. doi: 10.1371/journal.pmed.1001246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Hawkes C. The role of foreign direct investment in the nutrition transition. Public Health Nutr. 2005;8:357–65. doi: 10.1079/PHN2004706. [DOI] [PubMed] [Google Scholar]
  • 26.Cutler DM, Glaeser EL, Shapiro JM. Why have Americans become more obese? J Econometric Persp. 2003;17:93–118. doi: 10.1257/089533003769204371. [DOI] [Google Scholar]
  • 27.Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22:1164–71. doi: 10.1038/sj.ijo.0800741. [DOI] [PubMed] [Google Scholar]
  • 28.Euromonitor International [Internet]. Passport Global Market Information Database. Available from: http://www.euromonitor.com [accessed 2 October 2013].
  • 29.The World Bank [Internet]. World development indicators. Washington: World Bank; 2012. Available from: http://data.worldbank.org/data-catalog/world-development-indicators [accessed 2 October 2013]. [Google Scholar]
  • 30.Coleman WD. From protected development to market liberalism: paradigm change in agriculture. J European Public Policy. 1998;5:632–51. doi: 10.1080/13501769880000061. [DOI] [Google Scholar]
  • 31.Miller T, Holmes K. Index of economic freedom: the link between economic opportunity and prosperity Washington: Heritage Foundation; 2009. [Google Scholar]
  • 32.World Health Organization [Internet]. WHO Global InfoBase. Geneva: WHO; 2013. Available from: http://www.who.int/ncd_surveillance/infobase/en/ [accessed 2 October 2013].
  • 33.Pickett KE, Kelly S, Brunner E, Lobstein T, Wilkinson RG. Wider income gaps, wider waistbands? An ecological study of obesity and income inequality. J Epidemiol Community Health. 2005;59:670–4. doi: 10.1136/jech.2004.028795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Wilkinson R, Pickett K. The spirit level: why greater equality makes societies stronger. New York: Bloomsbury Press; 2009. [Google Scholar]
  • 35.Solt F. Standardizing the world income inequality database. Soc Sci Q. 2009;90:231–42. doi: 10.1111/j.1540-6237.2009.00614.x. [DOI] [Google Scholar]
  • 36.Deininger K, Squire L. A new dataset measuring income inequality. World Bank Econ Rev. 1996;10:565–91. doi: 10.1093/wber/10.3.565. [DOI] [Google Scholar]
  • 37.FAOSTAT Statistical Database Rome: Food and Agriculture Organization of the United Nations; 2012. [Google Scholar]
  • 38.Baltagi B. Econometric analysis of panel data 4th ed. Chichester: John Wiley & Sons; 2008. [Google Scholar]
  • 39.Wooldridge J. Advanced panel data methods. In: Wooldridge J, editor. Introductory econometrics: a modern approach Mason: South-Western Cengage Learning; 2009. p. 489. [Google Scholar]
  • 40.Greene WH. Econometric analysis. 5th ed. Upper Saddle River: Prentice Hall; 2012. [Google Scholar]
  • 41.Angrist J, Imbens G, Rubin D. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91:444–55. doi: 10.1080/01621459.1996.10476902. [DOI] [Google Scholar]
  • 42.Dunford E, Webster J, Barzi F, Neal B. Nutrient content of products served by leading Australian fast food chains. Appetite. 2010;55:484–9. doi: 10.1016/j.appet.2010.08.015. [DOI] [PubMed] [Google Scholar]
  • 43.Jahren AH, Kraft RA. Carbon and nitrogen stable isotopes in fast food: signatures of corn and confinement. Proc Natl Acad Sci U S A. 2008;105:17855–60. doi: 10.1073/pnas.0809870105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Monteiro CA. Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr. 2009;12:729–31. doi: 10.1017/S1368980009005291. [DOI] [PubMed] [Google Scholar]
  • 45.Alston JM, Sumner DA, Vosti SA. Farm subsidies and obesity in the United States: national evidence and international comparisons. Food Policy. 2008;33:470–9. doi: 10.1016/j.foodpol.2008.05.008. [DOI] [Google Scholar]
  • 46.Bleich S, Cutler D, Murray C, Adams A. Why is the developed world obese? Annu Rev Public Health. 2008;29:273–95. doi: 10.1146/annurev.publhealth.29.020907.090954. [DOI] [PubMed] [Google Scholar]
  • 47.Monteiro CA, Cannon G. The impact of transnational “big food” companies on the South: a view from Brazil. PLoS Med. 2012;9:e1001252. doi: 10.1371/journal.pmed.1001252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kurtz MJ, Schrank A. Growth and governance: models, measures and mechanisms. J Politics. 2007;69:538–54. doi: 10.1111/j.1468-2508.2007.00549.x. [DOI] [Google Scholar]
  • 49.World Health Organization. Global Health Observatory: the data repository. [Internet]. Available from: www.who.int/gho/database/en/ [accessed 2 October 2013].
  • 50.Baum CF. An introduction to modern econometrics using STATA. College Station: Stata Press; 2006. [Google Scholar]

Articles from Bulletin of the World Health Organization are provided here courtesy of World Health Organization

RESOURCES