Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 12;69(Pt 7):o1067–o1068. doi: 10.1107/S1600536813015134

A co-crystal of 1,10-phenanthroline with boric acid: a novel aza-aromatic complex

Arsalan Mirjafari a, Lam Pham b, Philip J Smith b, Richard E Sykora b, James H Davis Jr b,*
PMCID: PMC3952236  PMID: 24627684

Abstract

The title compound, C12H8N2·2B(OH)3, is best described as a host–guest complex in which the B(OH)3 mol­ecules form a hydrogen-bonded cyclic network of layers parallel to the ab plane into which the 1,10-phenanthroline mol­ecules are bound. An extensive network of hydrogen bonds are responsible for the crystal stability. No π-stacking inter­actions occur between the 1,10-phenanthroline mol­ecules.

Related literature  

For the design and synthesis of novel systems of non-covalent hosts involving hydrogen bonds, see: Pedireddi et al. (1997). In the field of supermolecular synthesis, recognition between the complementary functional groups is a main factor for the evaluation of influence of noncovalent inter­actions in the formation of specific architecture, see: Lehn (1990). The ability of the –B(OH)2 functionality to form a variety of hydrogen bonds through different conformations makes it a very suitable moiety for the synthesis of novel mol­ecular complexes, see: Lee et al. (2005). It is known to have an affinity for pyridyl N atoms, often forming O—H⋯N hydrogen bonds, as observed in some crystals of boronic acids with aza compounds (Talwelkar & Pedireddi, 2010). Non-covalent hosts are generally designed and synthesized by employing appropriate functional groups at required symmetry positions to form a cyclic network through the hydrogen bonds, see: Pedireddi (2001). This effect has been observed in simple mol­ecular adducts such as 1,10-phenanthroline and water (Tian et al., 1995).graphic file with name e-69-o1067-scheme1.jpg

Experimental  

Crystal data  

  • C12H8N2·2BH3O3

  • M r = 303.87

  • Triclinic, Inline graphic

  • a = 7.1390 (13) Å

  • b = 9.6189 (13) Å

  • c = 10.4756 (15) Å

  • α = 93.767 (11)°

  • β = 101.546 (14)°

  • γ = 90.644 (13)°

  • V = 703.05 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.35 × 0.16 × 0.09 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan [CrysAlis PRO (Oxford Diffraction, 2011) based on Clark & Reid (1995)] T min = 0.956, T max = 1.000

  • 10473 measured reflections

  • 2580 independent reflections

  • 1972 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.02

  • 2580 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813015134/ez2287sup1.cif

e-69-o1067-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813015134/ez2287Isup2.hkl

e-69-o1067-Isup2.hkl (126.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813015134/ez2287Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 1.90 2.7360 (16) 169
O2—H2⋯N1 0.85 1.88 2.7132 (17) 167
O3—H3⋯O1i 0.85 1.86 2.7076 (15) 177
O4—H4⋯O3i 0.85 1.89 2.7286 (16) 16
O5—H5⋯O4ii 0.85 1.89 2.7355 (18) 179
O6—H6⋯O2iii 0.85 1.95 2.7946 (17) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the National Science Foundation for their generous support (NSF-CAREER grant to RES, CHE-0846680).

supplementary crystallographic information

Comment

The design and synthesis of novel systems of noncovalent hosts involving hydrogen bonds is a vast research area in both molecular and supermolecular chemistry, see Pedireddi et al. (1997). In the field of supermolecular synthesis, recognition between the complementary functional groups is a main factor for the evaluation of influence of noncovalent interaction in the formation of specific architecture, see: Lehn (1990). In recent times, boric acid derivatives have been well considered to be potential co-crystal formers. In fact, the ability of –B(OH)2 functionality to form a variety of hydrogen bonds through different conformations makes it a very suitable moiety for the synthesis of novel molecular complexes, see Lee et al. (2005). The –B(OH)2 moiety is known to have an affinity for pyridyl N-atoms, often forming O—H···N hydrogen bonds, as observed in some crystals of boronic acids with aza compounds,see Talwelkar & Pedireddi (2010).

Non-covalent hosts are generally designed and synthesized by employing appropriate functional groups at required symmetry positions to form a cyclic network through the hydrogen bonds, see Pedireddi (2001). This effect has been observed vividly in simple molecular adduct such as 1,10-phenanthroline and water, see Tian et al. (1995). In this complex, a water molecule interacts with a molecule of 1,10-phenanthroline through O–H···N hydrogen bonds and an unique aza-aromatic complex is formed. In the latter, 1,10-phenanthroline could be considered as a host. Herein, we report the crystal structure of boric acid with 1,10-phenanthroline as an aza-donor compound.

As seen in Figure 1, the phen molecule forms a H-bonded adduct via two B–O–H···N interacts from one of the included B(OH)3 moieties. A strong network of hydrogen bonds among the B(OH)3 units forms a layered structure with alternating B(OH)3 and phen layers that reside in the ab planes (Figure 2). The B(OH)3 layers alone can be described as a cyclic network formed by hydrogen bonding interactions as can be seen in Figure 3. There are not any significant π-stacking interactions between the phen molecules.

Experimental

(CH3)3NBH3 (0.73 g, 10 mmol) and iodine (2.54 g, 5 mmol) were dissolved in toluene (4 ml) and stirred for 30 min. A solution of 1,10-phenanthroline (1.98 g, 10 mmol) in toluene (4 ml) was added, and the mixture refluxed overnight. The solution was cooled to room temperature, during which process orange-brown crystals were formed. The product was recrystallized twice from CH3CN to obtain analytically pure, red-brown crystalline product.

1H NMR (DMSO-d6, 300 MHz): δH 9.22 (dd, J = 2.8, 1.6 Hz, 2H), 8.67 (dd, J = 6.3, 1.6 Hz, 2H), 8.14 (s, 2H), 7.93 (q, J = 4.4 Hz, 2H), 6.62 (br, 2H); 13C NMR (DMSO-d6, 100 MHz): δC 151.67, 146.27, 139.09, 130.58, 128.77, 125.66.

Refinement

H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the aromatic H atoms and with Uiso(H) = 1.5Ueq(C) and O—H distances of 0.85 Å for hydroxyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of I, with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of I viewed along the b axis.

Fig. 3.

Fig. 3.

A representation of the two-dimensional B(OH)3 layers formed via hydrogen bonding in the structure of I.

Crystal data

C12H8N2·2BH3O3 Z = 2
Mr = 303.87 F(000) = 316
Triclinic, P1 Dx = 1.435 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1390 (13) Å Cell parameters from 3335 reflections
b = 9.6189 (13) Å θ = 3.2–25.3°
c = 10.4756 (15) Å µ = 0.11 mm1
α = 93.767 (11)° T = 295 K
β = 101.546 (14)° Prism, brown
γ = 90.644 (13)° 0.35 × 0.16 × 0.09 mm
V = 703.05 (19) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2580 independent reflections
Radiation source: fine-focus sealed tube 1972 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.0514 pixels mm-1 θmax = 25.4°, θmin = 3.2°
ω scans h = −8→8
Absorption correction: multi-scan [CrysAlis PRO (Oxford Diffraction, 2011) based on Clark & Reid (1995)] k = −11→11
Tmin = 0.956, Tmax = 1.000 l = −12→12
10473 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.044P)2 + 0.1204P] where P = (Fo2 + 2Fc2)/3
2580 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
B1 0.0170 (3) 0.65229 (18) 0.64598 (18) 0.0421 (4)
B2 0.2786 (3) −0.00132 (19) 0.59856 (18) 0.0439 (4)
C1 0.1542 (2) 0.83587 (17) 1.04155 (17) 0.0488 (4)
H1A 0.1058 0.9001 0.9816 0.059*
C2 0.1999 (3) 0.8822 (2) 1.17305 (19) 0.0573 (5)
H2A 0.1815 0.9743 1.1999 0.069*
C3 0.2718 (3) 0.7893 (2) 1.26068 (18) 0.0574 (5)
H3A 0.3014 0.8168 1.3493 0.069*
C4 0.3018 (2) 0.65145 (18) 1.21789 (15) 0.0464 (4)
C5 0.2496 (2) 0.61314 (16) 1.08273 (14) 0.0369 (4)
C6 0.3852 (3) 0.5520 (2) 1.30610 (17) 0.0587 (5)
H6A 0.4195 0.5784 1.3948 0.070*
C7 0.4149 (3) 0.4217 (2) 1.26368 (18) 0.0567 (5)
H7 0.4714 0.3593 1.3231 0.068*
C8 0.3612 (2) 0.37654 (17) 1.12795 (16) 0.0434 (4)
C9 0.2778 (2) 0.47095 (15) 1.03670 (14) 0.0361 (3)
C10 0.3890 (2) 0.23972 (17) 1.08186 (18) 0.0521 (5)
H10 0.4451 0.1755 1.1396 0.062*
C11 0.3337 (2) 0.20134 (17) 0.95254 (18) 0.0513 (4)
H11 0.3496 0.1107 0.9206 0.062*
C12 0.2522 (2) 0.30118 (16) 0.86861 (16) 0.0449 (4)
H12 0.2150 0.2741 0.7802 0.054*
N1 0.17492 (17) 0.70652 (13) 0.99611 (12) 0.0403 (3)
N2 0.22495 (17) 0.43158 (12) 0.90711 (12) 0.0385 (3)
O1 0.07961 (17) 0.52138 (11) 0.66548 (10) 0.0515 (3)
H1 0.1261 0.5050 0.7441 0.077*
O2 0.02929 (18) 0.75343 (11) 0.74334 (11) 0.0548 (3)
H2 0.0796 0.7268 0.8180 0.082*
O3 −0.06394 (19) 0.68679 (11) 0.52361 (11) 0.0583 (4)
H3 −0.0642 0.6217 0.4646 0.087*
O4 0.31472 (16) 0.10158 (11) 0.52210 (12) 0.0539 (3)
H4 0.2251 0.1595 0.5081 0.081*
O5 0.39825 (18) −0.11040 (12) 0.61562 (12) 0.0587 (3)
H5 0.4881 −0.1068 0.5734 0.088*
O6 0.12843 (18) 0.00858 (12) 0.65864 (12) 0.0584 (3)
H6 0.1101 −0.0702 0.6871 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
B1 0.0496 (11) 0.0403 (10) 0.0372 (10) 0.0098 (8) 0.0080 (8) 0.0079 (8)
B2 0.0530 (12) 0.0390 (10) 0.0376 (10) 0.0063 (8) 0.0042 (9) 0.0014 (8)
C1 0.0501 (10) 0.0455 (10) 0.0492 (10) 0.0076 (7) 0.0074 (8) −0.0006 (8)
C2 0.0585 (11) 0.0549 (11) 0.0557 (11) 0.0042 (9) 0.0099 (9) −0.0129 (9)
C3 0.0567 (11) 0.0713 (13) 0.0406 (10) −0.0023 (9) 0.0063 (8) −0.0125 (9)
C4 0.0398 (9) 0.0612 (11) 0.0362 (9) −0.0027 (8) 0.0036 (7) 0.0018 (8)
C5 0.0307 (8) 0.0468 (9) 0.0328 (8) −0.0008 (6) 0.0049 (6) 0.0055 (7)
C6 0.0639 (12) 0.0747 (13) 0.0333 (9) −0.0030 (10) −0.0013 (8) 0.0078 (9)
C7 0.0568 (11) 0.0685 (13) 0.0422 (10) 0.0011 (9) −0.0019 (8) 0.0214 (9)
C8 0.0355 (9) 0.0518 (10) 0.0430 (9) −0.0009 (7) 0.0045 (7) 0.0144 (7)
C9 0.0301 (8) 0.0432 (9) 0.0354 (8) −0.0011 (6) 0.0056 (6) 0.0091 (7)
C10 0.0482 (10) 0.0480 (10) 0.0603 (12) 0.0058 (8) 0.0051 (9) 0.0234 (9)
C11 0.0540 (10) 0.0400 (9) 0.0611 (12) 0.0059 (7) 0.0121 (9) 0.0102 (8)
C12 0.0496 (10) 0.0401 (9) 0.0447 (9) 0.0034 (7) 0.0080 (8) 0.0046 (7)
N1 0.0409 (7) 0.0419 (7) 0.0380 (7) 0.0046 (6) 0.0071 (6) 0.0032 (6)
N2 0.0397 (7) 0.0395 (7) 0.0362 (7) 0.0021 (5) 0.0062 (6) 0.0064 (6)
O1 0.0702 (8) 0.0450 (6) 0.0346 (6) 0.0199 (5) −0.0025 (5) 0.0063 (5)
O2 0.0850 (9) 0.0415 (6) 0.0373 (6) 0.0096 (6) 0.0093 (6) 0.0062 (5)
O3 0.0905 (9) 0.0455 (7) 0.0360 (6) 0.0270 (6) 0.0032 (6) 0.0077 (5)
O4 0.0538 (7) 0.0472 (7) 0.0644 (8) 0.0162 (5) 0.0151 (6) 0.0198 (6)
O5 0.0678 (8) 0.0517 (7) 0.0620 (8) 0.0202 (6) 0.0188 (6) 0.0226 (6)
O6 0.0742 (9) 0.0463 (7) 0.0606 (8) 0.0099 (6) 0.0266 (7) 0.0060 (6)

Geometric parameters (Å, º)

B1—O2 1.351 (2) C6—H6A 0.9300
B1—O1 1.355 (2) C7—C8 1.433 (2)
B1—O3 1.361 (2) C7—H7 0.9300
B2—O6 1.349 (2) C8—C10 1.402 (2)
B2—O5 1.359 (2) C8—C9 1.411 (2)
B2—O4 1.367 (2) C9—N2 1.3612 (19)
C1—N1 1.323 (2) C10—C11 1.358 (2)
C1—C2 1.393 (2) C10—H10 0.9300
C1—H1A 0.9300 C11—C12 1.397 (2)
C2—C3 1.355 (3) C11—H11 0.9300
C2—H2A 0.9300 C12—N2 1.3207 (19)
C3—C4 1.404 (2) C12—H12 0.9300
C3—H3A 0.9300 O1—H1 0.8500
C4—C5 1.413 (2) O2—H2 0.8501
C4—C6 1.425 (2) O3—H3 0.8500
C5—N1 1.3559 (19) O4—H4 0.8501
C5—C9 1.450 (2) O5—H5 0.8501
C6—C7 1.336 (3) O6—H6 0.8501
O2—B1—O1 123.27 (15) C6—C7—H7 119.5
O2—B1—O3 116.79 (14) C8—C7—H7 119.5
O1—B1—O3 119.94 (15) C10—C8—C9 118.24 (15)
O6—B2—O5 121.00 (16) C10—C8—C7 121.84 (15)
O6—B2—O4 119.75 (15) C9—C8—C7 119.92 (16)
O5—B2—O4 119.23 (17) N2—C9—C8 121.47 (14)
N1—C1—C2 124.43 (17) N2—C9—C5 119.64 (13)
N1—C1—H1A 117.8 C8—C9—C5 118.88 (14)
C2—C1—H1A 117.8 C11—C10—C8 119.70 (15)
C3—C2—C1 118.03 (16) C11—C10—H10 120.2
C3—C2—H2A 121.0 C8—C10—H10 120.2
C1—C2—H2A 121.0 C10—C11—C12 118.49 (16)
C2—C3—C4 120.11 (16) C10—C11—H11 120.8
C2—C3—H3A 119.9 C12—C11—H11 120.8
C4—C3—H3A 119.9 N2—C12—C11 124.05 (15)
C3—C4—C5 118.01 (16) N2—C12—H12 118.0
C3—C4—C6 121.94 (16) C11—C12—H12 118.0
C5—C4—C6 120.05 (16) C1—N1—C5 118.04 (13)
N1—C5—C4 121.35 (14) C12—N2—C9 118.04 (13)
N1—C5—C9 119.78 (13) B1—O1—H1 115.9
C4—C5—C9 118.86 (14) B1—O2—H2 113.4
C7—C6—C4 121.23 (16) B1—O3—H3 114.0
C7—C6—H6A 119.4 B2—O4—H4 113.0
C4—C6—H6A 119.4 B2—O5—H5 113.6
C6—C7—C8 121.04 (16) B2—O6—H6 108.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.85 1.90 2.7360 (16) 168.9
O2—H2···N1 0.85 1.88 2.7132 (17) 167.4
O3—H3···O1i 0.85 1.86 2.7076 (15) 176.8
O4—H4···O3i 0.85 1.89 2.7286 (16) 169.1
O5—H5···O4ii 0.85 1.89 2.7355 (18) 179.0
O6—H6···O2iii 0.85 1.95 2.7946 (17) 171.8

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2287).

References

  1. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Lee, S. O., Kariuki, B. M. & Harris, K. D. M. (2005). New. J. Chem 29, 1266–1271.
  4. Lehn, J. M. (1990). Angew. Chem. Int. Ed. 29, 1304-1319.
  5. Oxford Diffraction (2011). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Pedireddi, V. R. (2001). Cryst. Growth Des. 1, 383–385.
  7. Pedireddi, V. R., Chatterjee, S., Ranganathan, A. & Rao, C. N. R. (1997). J. Am. Chem. Soc. 119, 10867–10868.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Talwelkar, M. & Pedireddi, V. R. (2010). Tetrahedron Lett. 51, 6901–6905.
  10. Tian, Y.-P., Duan, C.-Y., Xu, X.-X. & You, X.-Z. (1995). Acta Cryst. C51, 2309–2312.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813015134/ez2287sup1.cif

e-69-o1067-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813015134/ez2287Isup2.hkl

e-69-o1067-Isup2.hkl (126.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813015134/ez2287Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES