Abstract
Type IV collagen forms a network that provides the major structural support of basement membranes. We have determined the nucleotide alterations and phenotypes of 17 mutant alleles of the Caenorhabditis elegans alpha 2(IV) collagen gene let-2. All 17 mutations are within the triple helical (Gly-X-Y) repeat domain of the molecule. Fifteen of the mutations are replacements of Gly-X-Y repeat glycines with aspartate, glutamate or arginine, and they cause a wide range of phenotypes. The mildest alleles are nearly wild-type at 15 and 20 degrees C but embryonic lethal at 25 degrees C, while the most severe allele is embryonic lethal at all three temperatures. Mutations resulting in severe phenotypes are generally located in areas of lower calculated thermal stability of the type IV collagen molecule. An alanine to threonine substitution at position X of a Gly-X-Y triplet immediately following an interruption results in a severe phenotype. This mutation is unusual because substitutions at positions X or Y have not generally been found to cause strong phenotypes in C. elegans or human collagens. An intron splice acceptor mutation causes a strict embryonic lethal phenotype, but does not completely abolish gene function. Pairs of independent mutations affect each of three glycines, indicating a non-random distribution of mutations in the molecule. It is suggested that this clustering results because many glycine substitutions may cause dominant lethal or sterile phenotypes.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ala-Kokko L., Baldwin C. T., Moskowitz R. W., Prockop D. J. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6565–6568. doi: 10.1073/pnas.87.17.6565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albertson D. G., Thomson J. N. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):299–325. doi: 10.1098/rstb.1976.0085. [DOI] [PubMed] [Google Scholar]
- Aroian R. V., Levy A. D., Koga M., Ohshima Y., Kramer J. M., Sternberg P. W. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site. Mol Cell Biol. 1993 Jan;13(1):626–637. doi: 10.1128/mcb.13.1.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumberg B., MacKrell A. J., Fessler J. H. Drosophila basement membrane procollagen alpha 1(IV). II. Complete cDNA sequence, genomic structure, and general implications for supramolecular assemblies. J Biol Chem. 1988 Dec 5;263(34):18328–18337. [PubMed] [Google Scholar]
- Brazel D., Oberbäumer I., Dieringer H., Babel W., Glanville R. W., Deutzmann R., Kühn K. Completion of the amino acid sequence of the alpha 1 chain of human basement membrane collagen (type IV) reveals 21 non-triplet interruptions located within the collagenous domain. Eur J Biochem. 1987 Nov 2;168(3):529–536. doi: 10.1111/j.1432-1033.1987.tb13450.x. [DOI] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers P. H., Steiner R. D. Osteogenesis imperfecta. Annu Rev Med. 1992;43:269–282. doi: 10.1146/annurev.me.43.020192.001413. [DOI] [PubMed] [Google Scholar]
- Bächinger H. P., Davis J. M. Sequence specific thermal stability of the collagen triple helix. Int J Biol Macromol. 1991 Jun;13(3):152–156. doi: 10.1016/0141-8130(91)90040-2. [DOI] [PubMed] [Google Scholar]
- Bächinger H. P., Morris N. P., Davis J. M. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen. Am J Med Genet. 1993 Jan 15;45(2):152–162. doi: 10.1002/ajmg.1320450204. [DOI] [PubMed] [Google Scholar]
- Cassada R., Isnenghi E., Culotti M., von Ehrenstein G. Genetic analysis of temperature-sensitive embryogenesis mutants in Caenorhabditis elegans. Dev Biol. 1981 May;84(1):193–205. doi: 10.1016/0012-1606(81)90383-3. [DOI] [PubMed] [Google Scholar]
- Chan D., Taylor T. K., Cole W. G. Characterization of an arginine 789 to cysteine substitution in alpha 1 (II) collagen chains of a patient with spondyloepiphyseal dysplasia. J Biol Chem. 1993 Jul 15;268(20):15238–15245. [PubMed] [Google Scholar]
- Cohn D. H., Starman B. J., Blumberg B., Byers P. H. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). Am J Hum Genet. 1990 Mar;46(3):591–601. [PMC free article] [PubMed] [Google Scholar]
- Desjardins M., Bendayan M. Ontogenesis of glomerular basement membrane: structural and functional properties. J Cell Biol. 1991 May;113(3):689–700. doi: 10.1083/jcb.113.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dölz R., Heidemann E. Influence of different tripeptides on the stability of the collagen triple helix. I. Analysis of the collagen sequence and identification of typical tripeptides. Biopolymers. 1986 Jun;25(6):1069–1080. doi: 10.1002/bip.360250607. [DOI] [PubMed] [Google Scholar]
- Engel J., Prockop D. J. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu Rev Biophys Biophys Chem. 1991;20:137–152. doi: 10.1146/annurev.bb.20.060191.001033. [DOI] [PubMed] [Google Scholar]
- Exposito J. Y., D'Alessio M., Di Liberto M., Ramirez F. Complete primary structure of a sea urchin type IV collagen alpha chain and analysis of the 5' end of its gene. J Biol Chem. 1993 Mar 5;268(7):5249–5254. [PubMed] [Google Scholar]
- Gunwar S., Saus J., Noelken M. E., Hudson B. G. Glomerular basement membrane. Identification of a fourth chain, alpha 4, of type IV collagen. J Biol Chem. 1990 Apr 5;265(10):5466–5469. [PubMed] [Google Scholar]
- Guo X. D., Johnson J. J., Kramer J. M. Embryonic lethality caused by mutations in basement membrane collagen of C. elegans. Nature. 1991 Feb 21;349(6311):707–709. doi: 10.1038/349707a0. [DOI] [PubMed] [Google Scholar]
- Guo X. D., Kramer J. M. The two Caenorhabditis elegans basement membrane (type IV) collagen genes are located on separate chromosomes. J Biol Chem. 1989 Oct 15;264(29):17574–17582. [PubMed] [Google Scholar]
- Hostikka S. L., Eddy R. L., Byers M. G., Höyhtyä M., Shows T. B., Tryggvason K. Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1606–1610. doi: 10.1073/pnas.87.4.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hostikka S. L., Tryggvason K. The complete primary structure of the alpha 2 chain of human type IV collagen and comparison with the alpha 1(IV) chain. J Biol Chem. 1988 Dec 25;263(36):19488–19493. [PubMed] [Google Scholar]
- Johnstone I. L., Shafi Y., Barry J. D. Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 1992 Nov;11(11):3857–3863. doi: 10.1002/j.1460-2075.1992.tb05478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer J. M., Johnson J. J. Analysis of mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans. Genetics. 1993 Dec;135(4):1035–1045. doi: 10.1093/genetics/135.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer J. M., Johnson J. J., Edgar R. S., Basch C., Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell. 1988 Nov 18;55(4):555–565. doi: 10.1016/0092-8674(88)90214-0. [DOI] [PubMed] [Google Scholar]
- Kramer J. M. Structures and functions of collagens in Caenorhabditis elegans. FASEB J. 1994 Mar 1;8(3):329–336. doi: 10.1096/fasebj.8.3.8143939. [DOI] [PubMed] [Google Scholar]
- Kuivaniemi H., Tromp G., Prockop D. J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991 Apr;5(7):2052–2060. doi: 10.1096/fasebj.5.7.2010058. [DOI] [PubMed] [Google Scholar]
- Kusukawa N., Uemori T., Asada K., Kato I. Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. Biotechniques. 1990 Jul;9(1):66-8, 70, 72. [PubMed] [Google Scholar]
- Levy A. D., Yang J., Kramer J. M. Molecular and genetic analyses of the Caenorhabditis elegans dpy-2 and dpy-10 collagen genes: a variety of molecular alterations affect organismal morphology. Mol Biol Cell. 1993 Aug;4(8):803–817. doi: 10.1091/mbc.4.8.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meneely P. M., Herman R. K. Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics. 1979 May;92(1):99–115. doi: 10.1093/genetics/92.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meneely P. M., Herman R. K. Suppression and function of X-linked lethal and sterile mutations in Caenorhabditis elegans. Genetics. 1981 Jan;97(1):65–84. doi: 10.1093/genetics/97.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montandon A. J., Green P. M., Giannelli F., Bentley D. R. Direct detection of point mutations by mismatch analysis: application to haemophilia B. Nucleic Acids Res. 1989 May 11;17(9):3347–3358. doi: 10.1093/nar/17.9.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muthukumaran G., Blumberg B., Kurkinen M. The complete primary structure for the alpha 1-chain of mouse collagen IV. Differential evolution of collagen IV domains. J Biol Chem. 1989 Apr 15;264(11):6310–6317. [PubMed] [Google Scholar]
- Pettitt J., Kingston I. B. The complete primary structure of a nematode alpha 2(IV) collagen and the partial structural organization of its gene. J Biol Chem. 1991 Aug 25;266(24):16149–16156. [PubMed] [Google Scholar]
- Phillips C. L., Shrago-Howe A. W., Pinnell S. R., Wenstrup R. J. A substitution at a non-glycine position in the triple-helical domain of pro alpha 2(I) collagen chains present in an individual with a variant of the Marfan syndrome. J Clin Invest. 1990 Nov;86(5):1723–1728. doi: 10.1172/JCI114897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saus J., Quinones S., MacKrell A., Blumberg B., Muthukumaran G., Pihlajaniemi T., Kurkinen M. The complete primary structure of mouse alpha 2(IV) collagen. Alignment with mouse alpha 1(IV) collagen. J Biol Chem. 1989 Apr 15;264(11):6318–6324. [PubMed] [Google Scholar]
- Saus J., Wieslander J., Langeveld J. P., Quinones S., Hudson B. G. Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J Biol Chem. 1988 Sep 15;263(26):13374–13380. [PubMed] [Google Scholar]
- Senapathy P., Shapiro M. B., Harris N. L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 1990;183:252–278. doi: 10.1016/0076-6879(90)83018-5. [DOI] [PubMed] [Google Scholar]
- Sibley M. H., Johnson J. J., Mello C. C., Kramer J. M. Genetic identification, sequence, and alternative splicing of the Caenorhabditis elegans alpha 2(IV) collagen gene. J Cell Biol. 1993 Oct;123(1):255–264. doi: 10.1083/jcb.123.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989 Apr 1;180(3):487–502. doi: 10.1111/j.1432-1033.1989.tb14673.x. [DOI] [PubMed] [Google Scholar]
- Tryggvason K., Zhou J., Hostikka S. L., Shows T. B. Molecular genetics of Alport syndrome. Kidney Int. 1993 Jan;43(1):38–44. doi: 10.1038/ki.1993.8. [DOI] [PubMed] [Google Scholar]
- White J. G., Southgate E., Thomson J. N., Brenner S. The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):327–348. doi: 10.1098/rstb.1976.0086. [DOI] [PubMed] [Google Scholar]
- Williams C. J., Considine E. L., Knowlton R. G., Reginato A., Neumann G., Harrison D., Buxton P., Jimenez S., Prockop D. J. Spondyloepiphyseal dysplasia and precocious osteoarthritis in a family with an Arg75-->Cys mutation in the procollagen type II gene (COL2A1). Hum Genet. 1993 Nov;92(5):499–505. doi: 10.1007/BF00216458. [DOI] [PubMed] [Google Scholar]
- Wood W. B., Hecht R., Carr S., Vanderslice R., Wolf N., Hirsh D. Parental effects and phenotypic characterization of mutations that affect early development in Caenorhabditis elegans. Dev Biol. 1980 Feb;74(2):446–469. doi: 10.1016/0012-1606(80)90445-5. [DOI] [PubMed] [Google Scholar]
- Yurchenco P. D., Ruben G. C. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol. 1987 Dec;105(6 Pt 1):2559–2568. doi: 10.1083/jcb.105.6.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yurchenco P. D., Schittny J. C. Molecular architecture of basement membranes. FASEB J. 1990 Apr 1;4(6):1577–1590. doi: 10.1096/fasebj.4.6.2180767. [DOI] [PubMed] [Google Scholar]
- Zhou J., Hertz J. M., Leinonen A., Tryggvason K. Complete amino acid sequence of the human alpha 5 (IV) collagen chain and identification of a single-base mutation in exon 23 converting glycine 521 in the collagenous domain to cysteine in an Alport syndrome patient. J Biol Chem. 1992 Jun 25;267(18):12475–12481. [PubMed] [Google Scholar]
- Zhou J., Mochizuki T., Smeets H., Antignac C., Laurila P., de Paepe A., Tryggvason K., Reeders S. T. Deletion of the paired alpha 5(IV) and alpha 6(IV) collagen genes in inherited smooth muscle tumors. Science. 1993 Aug 27;261(5125):1167–1169. doi: 10.1126/science.8356449. [DOI] [PubMed] [Google Scholar]