Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Jul 15;13(14):3296–3301. doi: 10.1002/j.1460-2075.1994.tb06631.x

Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung.

K Peters 1, S Werner 1, X Liao 1, S Wert 1, J Whitsett 1, L Williams 1
PMCID: PMC395226  PMID: 8045260

Abstract

Mouse lung development begins when two lung buds sprout from the epithelium of the embryonic gut. Patterning of the airways is then accomplished by the outgrowth and repetitive branching of the two lung buds, a process called branching morphogenesis. One of the four fibroblast growth factor (FGF) receptor genes, FGFR2, is expressed in the epithelium of a number of embryonic organs including the lung buds. To block the function of FGFR2 during branching morphogenesis of the lung without affecting its function in other embryonic tissues, the human surfactant protein C promoter was used to target expression of a dominant negative FGFR2 exclusively to lung bud epithelium in transgenic mice. Newborn mice expressing the transgene were completely normal except that instead of normally developed lungs they had two undifferentiated epithelial tubes that extended from the bifurcation of the trachea down to the diaphragm, a defect that resulted in perinatal death. Thus, the dominant negative FGF receptor completely blocked airway branching and epithelial differentiation, without prohibiting outgrowth, establishing a specific role for FGFs in branching morphogenesis of the mammalian lung.

Full text

PDF
3296

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALESCIO T., CASSINI A. Induction in vitro of tracheal buds by pulmonary mesenchyme grafted on tracheal epithelium. J Exp Zool. 1962 Jul;150:83–94. doi: 10.1002/jez.1401500202. [DOI] [PubMed] [Google Scholar]
  2. Alescio T., Dani A. M. The influence of mesenchyme on the epithelial glycogen and budding activity in mouse embryonic lung developing in vitro. J Embryol Exp Morphol. 1971 Feb;25(1):131–140. [PubMed] [Google Scholar]
  3. Amaya E., Musci T. J., Kirschner M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 1991 Jul 26;66(2):257–270. doi: 10.1016/0092-8674(91)90616-7. [DOI] [PubMed] [Google Scholar]
  4. Burgess W. H., Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043. [DOI] [PubMed] [Google Scholar]
  5. Dell K. R., Williams L. T. A novel form of fibroblast growth factor receptor 2. Alternative splicing of the third immunoglobulin-like domain confers ligand binding specificity. J Biol Chem. 1992 Oct 15;267(29):21225–21229. [PubMed] [Google Scholar]
  6. Fu Y. M., Spirito P., Yu Z. X., Biro S., Sasse J., Lei J., Ferrans V. J., Epstein S. E., Casscells W. Acidic fibroblast growth factor in the developing rat embryo. J Cell Biol. 1991 Sep;114(6):1261–1273. doi: 10.1083/jcb.114.6.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glazer L., Shilo B. Z. The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev. 1991 Apr;5(4):697–705. doi: 10.1101/gad.5.4.697. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez A. M., Buscaglia M., Ong M., Baird A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol. 1990 Mar;110(3):753–765. doi: 10.1083/jcb.110.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gospodarowicz D. Fibroblast growth factor and its involvement in developmental processes. Curr Top Dev Biol. 1990;24:57–93. doi: 10.1016/s0070-2153(08)60084-8. [DOI] [PubMed] [Google Scholar]
  10. Johnson D. E., Williams L. T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41. doi: 10.1016/s0065-230x(08)60821-0. [DOI] [PubMed] [Google Scholar]
  11. Kimelman D., Kirschner M. Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell. 1987 Dec 4;51(5):869–877. doi: 10.1016/0092-8674(87)90110-3. [DOI] [PubMed] [Google Scholar]
  12. Klämbt C., Glazer L., Shilo B. Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 1992 Sep;6(9):1668–1678. doi: 10.1101/gad.6.9.1668. [DOI] [PubMed] [Google Scholar]
  13. Korfhagen T. R., Glasser S. W., Wert S. E., Bruno M. D., Daugherty C. C., McNeish J. D., Stock J. L., Potter S. S., Whitsett J. A. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6122–6126. doi: 10.1073/pnas.87.16.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mason I. J., Fuller-Pace F., Smith R., Dickson C. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech Dev. 1994 Jan;45(1):15–30. doi: 10.1016/0925-4773(94)90050-7. [DOI] [PubMed] [Google Scholar]
  15. Miki T., Bottaro D. P., Fleming T. P., Smith C. L., Burgess W. H., Chan A. M., Aaronson S. A. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):246–250. doi: 10.1073/pnas.89.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Orr-Urtreger A., Givol D., Yayon A., Yarden Y., Lonai P. Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development. 1991 Dec;113(4):1419–1434. doi: 10.1242/dev.113.4.1419. [DOI] [PubMed] [Google Scholar]
  17. Peters K. G., Werner S., Chen G., Williams L. T. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 1992 Jan;114(1):233–243. doi: 10.1242/dev.114.1.233. [DOI] [PubMed] [Google Scholar]
  18. Peters K., Ornitz D., Werner S., Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol. 1993 Feb;155(2):423–430. doi: 10.1006/dbio.1993.1040. [DOI] [PubMed] [Google Scholar]
  19. Rubin J. S., Osada H., Finch P. W., Taylor W. G., Rudikoff S., Aaronson S. A. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A. 1989 Feb;86(3):802–806. doi: 10.1073/pnas.86.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slack J. M., Darlington B. G., Heath J. K., Godsave S. F. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature. 1987 Mar 12;326(6109):197–200. doi: 10.1038/326197a0. [DOI] [PubMed] [Google Scholar]
  21. Spooner B. S., Wessells N. K. Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J Exp Zool. 1970 Dec;175(4):445–454. doi: 10.1002/jez.1401750404. [DOI] [PubMed] [Google Scholar]
  22. Stark K. L., McMahon J. A., McMahon A. P. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development. 1991 Oct;113(2):641–651. doi: 10.1242/dev.113.2.641. [DOI] [PubMed] [Google Scholar]
  23. Ten Have-Opbroek A. A. Lung development in the mouse embryo. Exp Lung Res. 1991 Mar-Apr;17(2):111–130. doi: 10.3109/01902149109064406. [DOI] [PubMed] [Google Scholar]
  24. Ueno H., Escobedo J. A., Williams L. T. Dominant-negative mutations of platelet-derived growth factor (PDGF) receptors. Inhibition of receptor function by ligand-dependent formation of heterodimers between PDGF alpha- and beta-receptors. J Biol Chem. 1993 Oct 25;268(30):22814–22819. [PubMed] [Google Scholar]
  25. Ueno H., Gunn M., Dell K., Tseng A., Jr, Williams L. A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem. 1992 Jan 25;267(3):1470–1476. [PubMed] [Google Scholar]
  26. Werner S., Duan D. S., de Vries C., Peters K. G., Johnson D. E., Williams L. T. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol. 1992 Jan;12(1):82–88. doi: 10.1128/mcb.12.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Werner S., Weinberg W., Liao X., Peters K. G., Blessing M., Yuspa S. H., Weiner R. L., Williams L. T. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 1993 Jul;12(7):2635–2643. doi: 10.1002/j.1460-2075.1993.tb05924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wert S. E., Glasser S. W., Korfhagen T. R., Whitsett J. A. Transcriptional elements from the human SP-C gene direct expression in the primordial respiratory epithelium of transgenic mice. Dev Biol. 1993 Apr;156(2):426–443. doi: 10.1006/dbio.1993.1090. [DOI] [PubMed] [Google Scholar]
  29. Wispé J. R., Warner B. B., Clark J. C., Dey C. R., Neuman J., Glasser S. W., Crapo J. D., Chang L. Y., Whitsett J. A. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 1992 Nov 25;267(33):23937–23941. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES