Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 30;93(9):4278–4283. doi: 10.1073/pnas.93.9.4278

Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24).

C G Liu 1, C Maercker 1, M J Castañon 1, R Hauptmann 1, G Wiche 1
PMCID: PMC39526  PMID: 8633055

Abstract

Plectin, a 500-kDa intermediate filament binding protein, has been proposed to provide mechanical strength to cells and tissues by acting as a cross-linking element of the cytoskeleton. To set the basis for future studies on gene regulation, tissue-specific expression, and pathological conditions involving this protein, we have cloned the human plectin gene, determined its coding sequence, and established its genomic organization. The coding sequence contains 32 exons that extend over 32 kb of the human genome. Most of the introns reside within a region encoding the globular N-terminal domain of the molecule, whereas the entire central rod domain and the entire C-terminal globular domain were found to be encoded by single exons of remarkable length, >3 kb and >6 kb, respectively. Overall, the organization of the human plectin gene was strikingly similar to that of human bullous pemphigoid antigen 1 (BPAG1), confirming that both proteins belong to the same gene family. Comparison of the deduced protein sequences for human and rat plectin revealed that they were 93% identical. By using fluorescence in situ hybridization, we have mapped the plectin gene to the long arm of chromosome 8 within the telomeric region. This gene locus (8q24) has previously been implicated in the human blistering skin disease epidermolysis bullosa simplex Ogna. Detailed knowledge of the structure of the plectin gene and its chromosome localization will aid in the elucidation of whether this or any other pathological conditions are linked to alterations in the plectin gene.

Full text

PDF
4278

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnemann J., Spurr N. K., Wheeler G. N., Parker A. E., Buxton R. S. Chromosomal assignment of the human genes coding for the major proteins of the desmosome junction, desmoglein DGI (DSG), desmocollins DGII/III (DSC), desmoplakins DPI/II (DSP), and plakoglobin DPIII (JUP). Genomics. 1991 Jul;10(3):640–645. doi: 10.1016/0888-7543(91)90446-l. [DOI] [PubMed] [Google Scholar]
  2. Camisa C., Helm T. N. Paraneoplastic pemphigus is a distinct neoplasia-induced autoimmune disease. Arch Dermatol. 1993 Jul;129(7):883–886. [PubMed] [Google Scholar]
  3. Foisner R., Leichtfried F. E., Herrmann H., Small J. V., Lawson D., Wiche G. Cytoskeleton-associated plectin: in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J Cell Biol. 1988 Mar;106(3):723–733. doi: 10.1083/jcb.106.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foisner R., Wiche G. Structure and hydrodynamic properties of plectin molecules. J Mol Biol. 1987 Dec 5;198(3):515–531. doi: 10.1016/0022-2836(87)90297-x. [DOI] [PubMed] [Google Scholar]
  5. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  6. Green K. J., Parry D. A., Steinert P. M., Virata M. L., Wagner R. M., Angst B. D., Nilles L. A. Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J Biol Chem. 1990 Feb 15;265(5):2603–2612. [PubMed] [Google Scholar]
  7. Green K. J., Virata M. L., Elgart G. W., Stanley J. R., Parry D. A. Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments. Int J Biol Macromol. 1992 Jun;14(3):145–153. doi: 10.1016/s0141-8130(05)80004-2. [DOI] [PubMed] [Google Scholar]
  8. Guo L., Degenstein L., Dowling J., Yu Q. C., Wollmann R., Perman B., Fuchs E. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell. 1995 Apr 21;81(2):233–243. doi: 10.1016/0092-8674(95)90333-x. [DOI] [PubMed] [Google Scholar]
  9. Herrmann H., Wiche G. Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin. J Biol Chem. 1987 Jan 25;262(3):1320–1325. [PubMed] [Google Scholar]
  10. Lengauer C., Henn T., Onyango P., Francis F., Lehrach H., Weith A. Large-scale isolation of human 1p36-specific P1 clones and their use for fluorescence in situ hybridization. Genet Anal Tech Appl. 1994;11(5-6):140–147. doi: 10.1016/1050-3862(94)90034-5. [DOI] [PubMed] [Google Scholar]
  11. Marck C. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988 Mar 11;16(5):1829–1836. doi: 10.1093/nar/16.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Markova N. G., Marekov L. N., Chipev C. C., Gan S. Q., Idler W. W., Steinert P. M. Profilaggrin is a major epidermal calcium-binding protein. Mol Cell Biol. 1993 Jan;13(1):613–625. doi: 10.1128/mcb.13.1.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pytela R., Wiche G. High molecular weight polypeptides (270,000-340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4808–4812. doi: 10.1073/pnas.77.8.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sawamura D., Li K., Chu M. L., Uitto J. Human bullous pemphigoid antigen (BPAG1). Amino acid sequences deduced from cloned cDNAs predict biologically important peptide segments and protein domains. J Biol Chem. 1991 Sep 25;266(27):17784–17790. [PubMed] [Google Scholar]
  17. Sawamura D., Li K., Chu M. L., Uitto J. Human bullous pemphigoid antigen (BPAG1). Amino acid sequences deduced from cloned cDNAs predict biologically important peptide segments and protein domains. J Biol Chem. 1991 Sep 25;266(27):17784–17790. [PubMed] [Google Scholar]
  18. Sawamura D., Nomura K., Sugita Y., Mattei M. G., Chu M. L., Knowlton R., Uitto J. Bullous pemphigoid antigen (BPAG1): cDNA cloning and mapping of the gene to the short arm of human chromosome 6. Genomics. 1990 Dec;8(4):722–726. doi: 10.1016/0888-7543(90)90261-r. [DOI] [PubMed] [Google Scholar]
  19. Smith M. W. Structure of vertebrate genes: a statistical analysis implicating selection. J Mol Evol. 1988;27(1):45–55. doi: 10.1007/BF02099729. [DOI] [PubMed] [Google Scholar]
  20. Stanley J. R., Hawley-Nelson P., Yuspa S. H., Shevach E. M., Katz S. I. Characterization of bullous pemphigoid antigen: a unique basement membrane protein of stratified squamous epithelia. Cell. 1981 Jun;24(3):897–903. doi: 10.1016/0092-8674(81)90115-x. [DOI] [PubMed] [Google Scholar]
  21. Stapleton P., Weith A., Urbánek P., Kozmik Z., Busslinger M. Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet. 1993 Apr;3(4):292–298. doi: 10.1038/ng0493-292. [DOI] [PubMed] [Google Scholar]
  22. Tamai K., Sawamura D., Do H. C., Tamai Y., Li K., Uitto J. The human 230-kD bullous pemphigoid antigen gene (BPAG1). Exon-intron organization and identification of regulatory tissue specific elements in the promoter region. J Clin Invest. 1993 Aug;92(2):814–822. doi: 10.1172/JCI116655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Testa J. R., Parsa N. Z., Le Beau M. M., Vande Woude G. F. Localization of the proto-oncogene MOS to 8q11-q12 by in situ chromosomal hybridization. Genomics. 1988 Jul;3(1):44–47. doi: 10.1016/0888-7543(88)90157-7. [DOI] [PubMed] [Google Scholar]
  24. Virata M. L., Wagner R. M., Parry D. A., Green K. J. Molecular structure of the human desmoplakin I and II amino terminus. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):544–548. doi: 10.1073/pnas.89.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiche G., Becker B., Luber K., Weitzer G., Castañon M. J., Hauptmann R., Stratowa C., Stewart M. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J Cell Biol. 1991 Jul;114(1):83–99. doi: 10.1083/jcb.114.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wiche G., Gromov D., Donovan A., Castañn M. J., Fuchs E. Expression of plectin mutant cDNA in cultured cells indicates a role of COOH-terminal domain in intermediate filament association. J Cell Biol. 1993 May;121(3):607–619. doi: 10.1083/jcb.121.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wiche G. Plectin: general overview and appraisal of its potential role as a subunit protein of the cytomatrix. Crit Rev Biochem Mol Biol. 1989;24(1):41–67. doi: 10.3109/10409238909082551. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES