Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Oct 17;13(20):4877–4885. doi: 10.1002/j.1460-2075.1994.tb06815.x

The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli.

J R Mesters 1, L A Zeef 1, R Hilgenfeld 1, J M de Graaf 1, B Kraal 1, L Bosch 1
PMCID: PMC395428  PMID: 7525272

Abstract

A structural and functional understanding of resistance to the antibiotic kirromycin in Escherichia coli has been sought in order to shed new light on the functioning of the bacterial elongation factor Tu (EF-Tu), in particular its ability to act as a molecular switch. The mutant EF-Tu species G316D, A375T, A375V and Q124K, isolated by M13mp phage-mediated targeted mutagenesis, were studied. In this order the mutant EF-Tu species showed increasing resistance to the antibiotic as measured by poly(U)-directed poly(Phe) synthesis and intrinsic GTPase activities. The K'd values for kirromycin binding to mutant EF-Tu.GTP and EF-Tu.GDP increased in the same order. All mutation sites cluster in the interface of domains 1 and 3 of EF-Tu.GTP, not in that of EF-Tu.GDP. Evidence is presented that kirromycin binds to this interface of wild-type EF-Tu.GTP, thereby jamming the conformational switch of EF-Tu upon GTP hydrolysis. We conclude that the mutations result in two separate mechanisms of resistance to kirromycin. The first inhibits access of the antibiotic to its binding site on EF-Tu.GTP. A second mechanism exists on the ribosome, when mutant EF-Tu species release kirromycin and polypeptide chain elongation continues.

Full text

PDF
4877

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Acampo J. J., Kraal B., Bosch L. The influence of tRNA located at the P-site on the turnover of EF-Tu.GTP on ribosomes. Biochimie. 1991 Jul-Aug;73(7-8):1089–1092. doi: 10.1016/0300-9084(91)90150-y. [DOI] [PubMed] [Google Scholar]
  2. Balestrieri C., Giovane A., Quagliuolo L., Servillo L., Chinali G. Conformation and reactivity changes induced by N-methylkirromycin (aurodox) in elongation factor Tu. Biochemistry. 1989 Aug 22;28(17):7097–7101. doi: 10.1021/bi00443a046. [DOI] [PubMed] [Google Scholar]
  3. Berchtold H., Reshetnikova L., Reiser C. O., Schirmer N. K., Sprinzl M., Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 1993 Sep 9;365(6442):126–132. doi: 10.1038/365126a0. [DOI] [PubMed] [Google Scholar]
  4. Bocchini V., Parlato G., De Vendittis E., Sander G., Parmeggiani A. Energetic aspects of the EF-Tu-dependent GTPase activity. A study using the antibiotic kirromycin. Eur J Biochem. 1980 Dec;113(1):53–60. doi: 10.1111/j.1432-1033.1980.tb06138.x. [DOI] [PubMed] [Google Scholar]
  5. Bosch L., Kraal B., Van der Meide P. H., Duisterwinkel F. J., Van Noort J. M. The elongation factor EF-Tu and its two encoding genes. Prog Nucleic Acid Res Mol Biol. 1983;30:91–126. doi: 10.1016/s0079-6603(08)60684-4. [DOI] [PubMed] [Google Scholar]
  6. Cammarano P., Teichner A., Chinali G., Londei P., de Rosa M., Gambacorta A., Nicolaus B. Archaebacterial elongation factor Tu insensitive to pulvomycin and kirromycin. FEBS Lett. 1982 Nov 8;148(2):255–259. doi: 10.1016/0014-5793(82)80819-3. [DOI] [PubMed] [Google Scholar]
  7. Chinali G. Identification of the part of kirromycin structure that acts on elongation factor Tu. FEBS Lett. 1981 Aug 17;131(1):94–98. doi: 10.1016/0014-5793(81)80895-2. [DOI] [PubMed] [Google Scholar]
  8. Chinali G., Wolf H., Parmeggiani A. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor. Eur J Biochem. 1977 May 2;75(1):55–65. doi: 10.1111/j.1432-1033.1977.tb11503.x. [DOI] [PubMed] [Google Scholar]
  9. Cousineau B., Cerpa C., Lefebvre J., Cedergren R. The sequence of the gene encoding elongation factor Tu from Chlamydia trachomatis compared with those of other organisms. Gene. 1992 Oct 12;120(1):33–41. doi: 10.1016/0378-1119(92)90006-b. [DOI] [PubMed] [Google Scholar]
  10. Crechet J. B., Parmeggiani A. Characterization of the elongation factors from calf brain. 2. Functional properties of EF-1 alpha, the action of physiological ligands and kirromycin. Eur J Biochem. 1986 Dec 15;161(3):647–653. doi: 10.1111/j.1432-1033.1986.tb10489.x. [DOI] [PubMed] [Google Scholar]
  11. Douglass J., Blumenthal T. Conformational transition of protein synthesis elongation factor Tu induced by guanine nucleotides. Modulation by kirromycin and elongation factor Ts. J Biol Chem. 1979 Jun 25;254(12):5383–5387. [PubMed] [Google Scholar]
  12. Duisterwinkel F. J., Kraal B., De Graaf J. M., Talens A., Bosch L., Swart G. W., Parmeggiani A., La Cour T. F., Nyborg J., Clark B. F. Specific alterations of the EF-Tu polypeptide chain considered in the light of its three-dimensional structure. EMBO J. 1984 Jan;3(1):113–120. doi: 10.1002/j.1460-2075.1984.tb01770.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duisterwinkel F. J., de Graaf J. M., Kraal B., Bosch L. A kirromycin resistant elongation factor EF-Tu from Escherichia coli contains a threonine instead of an alanine residue in position 375. FEBS Lett. 1981 Aug 17;131(1):89–93. doi: 10.1016/0014-5793(81)80894-0. [DOI] [PubMed] [Google Scholar]
  14. Eccleston J. F. Spectroscopic studies of the nucleotide binding site of elongation factor Tu from Escherichia coli. An approach to characterizing the elementary steps of the elongation cycle of protein biosynthesis. Biochemistry. 1981 Oct 13;20(21):6265–6272. doi: 10.1021/bi00524a055. [DOI] [PubMed] [Google Scholar]
  15. Fasano O., Bruns W., Crechet J. B., Sander G., Parmeggiani A. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts. Eur J Biochem. 1978 Sep 1;89(2):557–565. doi: 10.1111/j.1432-1033.1978.tb12560.x. [DOI] [PubMed] [Google Scholar]
  16. Fasano O., Parmeggiani A. Altered regulation of the guanosine 5'-triphosphate activity in a kirromycin-resistant elongation factor Tu. Biochemistry. 1981 Mar 3;20(5):1361–1366. doi: 10.1021/bi00508a050. [DOI] [PubMed] [Google Scholar]
  17. Jensen M., Cool R. H., Mortensen K. K., Clark B. F., Parmeggiani A. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain. Eur J Biochem. 1989 Jun 15;182(2):247–255. doi: 10.1111/j.1432-1033.1989.tb14824.x. [DOI] [PubMed] [Google Scholar]
  18. Kessel M., Klink F. Two elongation factors from the extremely halophilic archaebacterium Halobacterium cutirubrum. Assay systems and purification at high salt concentrations. Eur J Biochem. 1981 Mar;114(3):481–486. doi: 10.1111/j.1432-1033.1981.tb05170.x. [DOI] [PubMed] [Google Scholar]
  19. Kjeldgaard M., Nissen P., Thirup S., Nyborg J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1993 Sep 15;1(1):35–50. doi: 10.1016/0969-2126(93)90007-4. [DOI] [PubMed] [Google Scholar]
  20. Kjeldgaard M., Nyborg J. Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol. 1992 Feb 5;223(3):721–742. doi: 10.1016/0022-2836(92)90986-t. [DOI] [PubMed] [Google Scholar]
  21. Kraal B., Bosch L., Mesters J. R., de Graaf J. M., Woudt L. P., Vijgenboom E., Heinstra P. W., Zeef L. A., Boon C. Elongation factors in protein synthesis. Ciba Found Symp. 1993;176:28–52. doi: 10.1002/9780470514450.ch3. [DOI] [PubMed] [Google Scholar]
  22. Kraal B., de Graaf J. M., Mesters J. R., van Hoof P. J., Jacquet E., Parmeggiani A. Fluoroaluminates do not affect the guanine-nucleotide binding centre of the peptide chain elongation factor EF-Tu. Eur J Biochem. 1990 Sep 11;192(2):305–309. doi: 10.1111/j.1432-1033.1990.tb19228.x. [DOI] [PubMed] [Google Scholar]
  23. Kushiro M., Shimizu M., Tomita K. Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus HB8. Eur J Biochem. 1987 Dec 30;170(1-2):93–98. doi: 10.1111/j.1432-1033.1987.tb13671.x. [DOI] [PubMed] [Google Scholar]
  24. Landini P., Bandera M., Soffientini A., Goldstein B. P. Sensitivity of elongation factor Tu (EF-Tu) from different bacterial species to the antibiotics efrotomycin, pulvomycin and MDL 62879. J Gen Microbiol. 1993 Apr;139(4):769–774. doi: 10.1099/00221287-139-4-769. [DOI] [PubMed] [Google Scholar]
  25. Londei P., Sanz J. L., Altamura S., Hummel H., Cammarano P., Amils R., Böck A., Wolf H. Unique antibiotic sensitivity of archaebacterial polypeptide elongation factors. J Bacteriol. 1986 Jul;167(1):265–271. doi: 10.1128/jb.167.1.265-271.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ludwig W., Weizenegger M., Betzl D., Leidel E., Lenz T., Ludvigsen A., Möllenhoff D., Wenzig P., Schleifer K. H. Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: functional, structural and phylogenetic evaluations. Arch Microbiol. 1990;153(3):241–247. doi: 10.1007/BF00249075. [DOI] [PubMed] [Google Scholar]
  27. Mesters J. R., Martien de Graaf J., Kraal B. Divergent effects of fluoroaluminates on the peptide chain elongation factors EF-Tu and EF-G as members of the GTPase superfamily. FEBS Lett. 1993 Apr 26;321(2-3):149–152. doi: 10.1016/0014-5793(93)80097-e. [DOI] [PubMed] [Google Scholar]
  28. Nagata S., Tsunetsugu-Yokota Y., Naito A., Kaziro Y. Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6192–6196. doi: 10.1073/pnas.80.20.6192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  30. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pakula A. A., Sauer R. T. Genetic analysis of protein stability and function. Annu Rev Genet. 1989;23:289–310. doi: 10.1146/annurev.ge.23.120189.001445. [DOI] [PubMed] [Google Scholar]
  32. Parmeggiani A., Swart G. W. Mechanism of action of kirromycin-like antibiotics. Annu Rev Microbiol. 1985;39:557–577. doi: 10.1146/annurev.mi.39.100185.003013. [DOI] [PubMed] [Google Scholar]
  33. Piechulla B., Küntzel H. Mitochondrial polypeptide elongation factor EF-Tu of Saccharomyces cerevisiae. Functional and structural homologies to Escherichia coli EF-Tu. Eur J Biochem. 1983 May 2;132(2):235–240. doi: 10.1111/j.1432-1033.1983.tb07353.x. [DOI] [PubMed] [Google Scholar]
  34. Pieper U., Ehbrecht H. J., Fliess A., Schick B., Jurnak F., Pingoud A. Genetic engineering, isolation and characterization of a truncated Escherichia coli elongation factor Tu comprising domains 2 and 3. Biochim Biophys Acta. 1990 Oct 23;1087(2):147–156. doi: 10.1016/0167-4781(90)90199-c. [DOI] [PubMed] [Google Scholar]
  35. Pingoud A., Block W., Wittinghofer A., Wolf H., Fischer E. The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP. J Biol Chem. 1982 Oct 10;257(19):11261–11267. [PubMed] [Google Scholar]
  36. Rosenthal L. P., Bodley J. W. Purification and characterization of Saccharomyces cerevisiae mitochondrial elongation factor Tu. J Biol Chem. 1987 Aug 15;262(23):10955–10959. [PubMed] [Google Scholar]
  37. Römer R., Block W., Pingoud A., Wolf H. A 1H NMR study of the Escherichia coli elongation-factor Tu with guanine nucleotides and the antibiotic kirromycin. FEBS Lett. 1981 Apr 20;126(2):161–164. doi: 10.1016/0014-5793(81)80231-1. [DOI] [PubMed] [Google Scholar]
  38. Stouten P. F., Sander C., Wittinghofer A., Valencia A. How does the switch II region of G-domains work? FEBS Lett. 1993 Mar 29;320(1):1–6. doi: 10.1016/0014-5793(93)81644-f. [DOI] [PubMed] [Google Scholar]
  39. Van Noort J. M., Kraal B., Bosch L., La Cour T. F., Nyborg J., Clark B. F. Cross-linking of tRNA at two different sites of the elongation factor Tu. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3969–3972. doi: 10.1073/pnas.81.13.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van der Meide P. H., Duisterwinkel F. J., De Graaf J. M., Kraal B., Bosch L., Douglass J., Blumenthal T. Molecular properties of two mutant species of the elongation factor Tu. Eur J Biochem. 1981 Jun;117(1):1–6. doi: 10.1111/j.1432-1033.1981.tb06294.x. [DOI] [PubMed] [Google Scholar]
  41. Vijgenboom E., Bosch L. Translational frameshifts induced by mutant species of the polypeptide chain elongation factor Tu of Escherichia coli. J Biol Chem. 1989 Aug 5;264(22):13012–13017. [PubMed] [Google Scholar]
  42. Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wörner W., Wolf H. Kirromycin-resistant elongation factor Tu from wild-type of Lactobacillus brevis. FEBS Lett. 1982 Sep 20;146(2):322–326. doi: 10.1016/0014-5793(82)80944-7. [DOI] [PubMed] [Google Scholar]
  44. Yokota T., Sugisaki H., Takanami M., Kaziro Y. The nucleotide sequence of the cloned tufA gene of Escherichia coli. Gene. 1980 Dec;12(1-2):25–31. doi: 10.1016/0378-1119(80)90012-8. [DOI] [PubMed] [Google Scholar]
  45. Zeef L. A., Bosch L. A technique for targeted mutagenesis of the EF-Tu chromosomal gene by M13-mediated gene replacement. Mol Gen Genet. 1993 Apr;238(1-2):252–260. doi: 10.1007/BF00279554. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES