Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Nov 15;13(22):5460–5469. doi: 10.1002/j.1460-2075.1994.tb06881.x

A conserved upstream element is essential for transcription of the Leishmania tarentolae mini-exon gene.

R M Saito 1, M G Elgort 1, D A Campbell 1
PMCID: PMC395504  PMID: 7957112

Abstract

We demonstrate that the mini-exon genes of Leishmania tarentolae are individually transcribed by an enzyme pharmacologically identified as RNA polymerase II. To study transcription in these ancient eukaryotes, a stable transformation assay using an episomal mini-exon gene was developed. The introduced mini-exon gene, which had been marked with a 40 bp tag, yielded the predicted tagged transcript. An upstream cis-acting element that was essential for transcription of the mini-exon gene was identified by site-directed mutagenesis. Block substitution mutagenesis of the -1 to +9 and +10 to +19 regions of the exon results in 20- to 100-fold decreased levels of the tagged transcript in steady-state RNA. However, since these two mutations resulted in only a 2- to 3-fold decrease in nascent RNA levels, steady-state levels appear to be affected greatest by the stability of the resulting transcript. In contrast, mutation of the -67/-58 region resulted in undetectable levels of both steady-state and nascent RNA from the introduced gene. We conclude, therefore, that this upstream element, which is highly conserved in all Leishmania species, is a component of the mini-exon gene promoter.

Full text

PDF
5460

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agami R., Aly R., Halman S., Shapira M. Functional analysis of cis-acting DNA elements required for expression of the SL RNA gene in the parasitic protozoan Leishmania amazonensis. Nucleic Acids Res. 1994 Jun 11;22(11):1959–1965. doi: 10.1093/nar/22.11.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakalara N., Kendall G., Michels P. A., Opperdoes F. R. Trypanosoma brucei glycosomal glyceraldehyde-3-phosphate dehydrogenase genes are stage-regulated at the transcription level. EMBO J. 1992 Oct;11(10):3808–3808. doi: 10.1002/j.1460-2075.1992.tb05466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben Amar M. F., Jefferies D., Pays A., Bakalara N., Kendall G., Pays E. The actin gene promoter of Trypanosoma brucei. Nucleic Acids Res. 1991 Nov 11;19(21):5857–5862. doi: 10.1093/nar/19.21.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben Amar M. F., Pays A., Tebabi P., Dero B., Seebeck T., Steinert M., Pays E. Structure and transcription of the actin gene of Trypanosoma brucei. Mol Cell Biol. 1988 May;8(5):2166–2176. doi: 10.1128/mcb.8.5.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernards A., Van der Ploeg L. H., Frasch A. C., Borst P., Boothroyd J. C., Coleman S., Cross G. A. Activation of trypanosome surface glycoprotein genes involves a duplication-transposition leading to an altered 3' end. Cell. 1981 Dec;27(3 Pt 2):497–505. doi: 10.1016/0092-8674(81)90391-3. [DOI] [PubMed] [Google Scholar]
  6. Boothroyd J. C., Cross G. A. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5' end. Gene. 1982 Dec;20(2):281–289. doi: 10.1016/0378-1119(82)90046-4. [DOI] [PubMed] [Google Scholar]
  7. Brown S. D., Huang J., Van der Ploeg L. H. The promoter for the procyclic acidic repetitive protein (PARP) genes of Trypanosoma brucei shares features with RNA polymerase I promoters. Mol Cell Biol. 1992 Jun;12(6):2644–2652. doi: 10.1128/mcb.12.6.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell D. A., Suyama Y., Simpson L. Genomic organisation of nuclear tRNAGly and tRNALeu genes in Trypanosoma brucei. Mol Biochem Parasitol. 1989 Dec;37(2):257–262. doi: 10.1016/0166-6851(89)90157-6. [DOI] [PubMed] [Google Scholar]
  9. Campbell D. A. Tandemly linked tRNA(Gln), tRNA(Val) and tRNA(Lys) genes in Trypanosoma brucei. Nucleic Acids Res. 1989 Nov 25;17(22):9479–9479. doi: 10.1093/nar/17.22.9479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chung H. M., Lee M. G., Dietrich P., Huang J., Van der Ploeg L. H. Disruption of largest subunit RNA polymerase II genes in Trypanosoma brucei. Mol Cell Biol. 1993 Jun;13(6):3734–3743. doi: 10.1128/mcb.13.6.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clayton C. Developmental regulation of nuclear gene expression in Trypanosoma brucei. Prog Nucleic Acid Res Mol Biol. 1992;43:37–66. doi: 10.1016/s0079-6603(08)61043-0. [DOI] [PubMed] [Google Scholar]
  12. Cochet-Meilhac M., Chambon P. Animal DNA-dependent RNA polymerases. 11. Mechanism of the inhibition of RNA polymerases B by amatoxins. Biochim Biophys Acta. 1974 Jun 27;353(2):160–184. doi: 10.1016/0005-2787(74)90182-8. [DOI] [PubMed] [Google Scholar]
  13. Cook G. A., Donelson J. E. Mini-exon gene repeats of Trypanosoma (Nannomonas) congolense have internal repeats of 190 base pairs. Mol Biochem Parasitol. 1987 Aug;25(1):113–122. doi: 10.1016/0166-6851(87)90024-7. [DOI] [PubMed] [Google Scholar]
  14. Cordingley J. S. Nucleotide sequence of the 5S ribosomal RNA gene repeat of Trypanosoma brucei. Mol Biochem Parasitol. 1985 Dec;17(3):321–330. doi: 10.1016/0166-6851(85)90006-4. [DOI] [PubMed] [Google Scholar]
  15. Cornelissen A. W., Verspieren M. P., Toulmé J. J., Swinkels B. W., Borst P. The common 5' terminal sequence on trypanosome mRNAs: a target for anti-messenger oligodeoxynucleotides. Nucleic Acids Res. 1986 Jul 25;14(14):5605–5614. doi: 10.1093/nar/14.14.5605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Curotto de Lafaille M. A., Laban A., Wirth D. F. Gene expression in Leishmania: analysis of essential 5' DNA sequences. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2703–2707. doi: 10.1073/pnas.89.7.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dietrich P., Soares M. B., Affonso M. H., Floeter-Winter L. M. The Trypanosoma cruzi ribosomal RNA-encoding gene: analysis of promoter and upstream intergenic spacer sequences. Gene. 1993 Mar 15;125(1):103–107. doi: 10.1016/0378-1119(93)90753-p. [DOI] [PubMed] [Google Scholar]
  18. Fantoni A., Dare A. O., Tschudi C. RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Mol Cell Biol. 1994 Mar;14(3):2021–2028. doi: 10.1128/mcb.14.3.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  20. Fernandes O., Murthy V. K., Kurath U., Degrave W. M., Campbell D. A. Mini-exon gene variation in human pathogenic Leishmania species. Mol Biochem Parasitol. 1994 Aug;66(2):261–271. doi: 10.1016/0166-6851(94)90153-8. [DOI] [PubMed] [Google Scholar]
  21. Fleischmann J., Campbell D. A. Expression of the Leishmania tarentolae ubiquitin-encoding and mini-exon genes. Gene. 1994 Jun 24;144(1):45–51. doi: 10.1016/0378-1119(94)90201-1. [DOI] [PubMed] [Google Scholar]
  22. Freistadt M. S., Cross G. A., Branch A. D., Robertson H. D. Direct analysis of the mini-exon donor RNA of Trypanosoma brucei: detection of a novel cap structure also present in messenger RNA. Nucleic Acids Res. 1987 Dec 10;15(23):9861–9879. doi: 10.1093/nar/15.23.9861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Geiduschek E. P., Tocchini-Valentini G. P. Transcription by RNA polymerase III. Annu Rev Biochem. 1988;57:873–914. doi: 10.1146/annurev.bi.57.070188.004301. [DOI] [PubMed] [Google Scholar]
  24. Gibson W. C., Swinkels B. W., Borst P. Post-transcriptional control of the differential expression of phosphoglycerate kinase genes in Trypanosoma brucei. J Mol Biol. 1988 May 20;201(2):315–325. doi: 10.1016/0022-2836(88)90140-4. [DOI] [PubMed] [Google Scholar]
  25. Grondal E. J., Evers R., Cornelissen A. W. Identification and sequence analysis of the ribosomal DNA promoter region of Crithidia fasciculata. Nucleic Acids Res. 1990 Mar 25;18(6):1333–1338. doi: 10.1093/nar/18.6.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Grondal E. J., Evers R., Kosubek K., Cornelissen A. W. Characterization of the RNA polymerases of Trypanosoma brucei: trypanosomal mRNAs are composed of transcripts derived from both RNA polymerase II and III. EMBO J. 1989 Nov;8(11):3383–3389. doi: 10.1002/j.1460-2075.1989.tb08502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hancock K., LeBlanc A. J., Donze D., Hajduk S. L. Identification of nuclear encoded precursor tRNAs within the mitochondrion of Trypanosoma brucei. J Biol Chem. 1992 Nov 25;267(33):23963–23971. [PubMed] [Google Scholar]
  28. Hannon G. J., Maroney P. A., Ayers D. G., Shambaugh J. D., Nilsen T. W. Transcription of a nematode trans-spliced leader RNA requires internal elements for both initiation and 3' end-formation. EMBO J. 1990 Jun;9(6):1915–1921. doi: 10.1002/j.1460-2075.1990.tb08318.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Johnson P. J., Kooter J. M., Borst P. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell. 1987 Oct 23;51(2):273–281. doi: 10.1016/0092-8674(87)90154-1. [DOI] [PubMed] [Google Scholar]
  30. Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kapler G. M., Zhang K., Beverley S. M. Nuclease mapping and DNA sequence analysis of transcripts from the dihydrofolate reductase-thymidylate synthase (R) region of Leishmania major. Nucleic Acids Res. 1990 Nov 11;18(21):6399–6408. doi: 10.1093/nar/18.21.6399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kooter J. M., Borst P. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res. 1984 Dec 21;12(24):9457–9472. doi: 10.1093/nar/12.24.9457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kooter J. M., De Lange T., Borst P. Discontinuous synthesis of mRNA in trypanosomes. EMBO J. 1984 Oct;3(10):2387–2392. doi: 10.1002/j.1460-2075.1984.tb02144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Köck J., Cornelissen A. W. Characterization of the RNA polymerases of Crithidia fasciculata. Mol Microbiol. 1991 Apr;5(4):835–842. doi: 10.1111/j.1365-2958.1991.tb00756.x. [DOI] [PubMed] [Google Scholar]
  35. König E., Delius H., Carrington M., Williams R. O., Roditi I. Duplication and transcription of procyclin genes in Trypanosoma brucei. Nucleic Acids Res. 1989 Nov 11;17(21):8727–8739. doi: 10.1093/nar/17.21.8727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Laird P. W., Kooter J. M., Loosbroek N., Borst P. Mature mRNAs of Trypanosoma brucei possess a 5' cap acquired by discontinuous RNA synthesis. Nucleic Acids Res. 1985 Jun 25;13(12):4253–4266. doi: 10.1093/nar/13.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Landfear S. M., Miller S. I., Wirth D. F. Transcriptional mapping of Leishmania enrietti tubulin mRNAs. Mol Biochem Parasitol. 1986 Dec;21(3):235–245. doi: 10.1016/0166-6851(86)90129-5. [DOI] [PubMed] [Google Scholar]
  38. LeBowitz J. H., Coburn C. M., McMahon-Pratt D., Beverley S. M. Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9736–9740. doi: 10.1073/pnas.87.24.9736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lenardo M. J., Dorfman D. M., Donelson J. E. The spliced leader sequence of Trypanosoma brucei has a potential role as a cap donor structure. Mol Cell Biol. 1985 Sep;5(9):2487–2490. doi: 10.1128/mcb.5.9.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Martínez-Calvillo S., Hernández R. Trypanosoma cruzi ribosomal DNA: mapping of a putative distal promoter. Gene. 1994 May 16;142(2):243–247. doi: 10.1016/0378-1119(94)90268-2. [DOI] [PubMed] [Google Scholar]
  41. Mattaj I. W., Lienhard S., Jiricny J., De Robertis E. M. An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes. Nature. 1985 Jul 11;316(6024):163–167. doi: 10.1038/316163a0. [DOI] [PubMed] [Google Scholar]
  42. McNally K. P., Agabian N. Trypanosoma brucei spliced-leader RNA methylations are required for trans splicing in vivo. Mol Cell Biol. 1992 Nov;12(11):4844–4851. doi: 10.1128/mcb.12.11.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Michaeli S., Podell D., Agabian N., Ullu E. The 7SL RNA homologue of Trypanosoma brucei is closely related to mammalian 7SL RNA. Mol Biochem Parasitol. 1992 Mar;51(1):55–64. doi: 10.1016/0166-6851(92)90200-4. [DOI] [PubMed] [Google Scholar]
  44. Miller S. I., Landfear S. M., Wirth D. F. Cloning and characterization of a Leishmania gene encoding a RNA spliced leader sequence. Nucleic Acids Res. 1986 Sep 25;14(18):7341–7360. doi: 10.1093/nar/14.18.7341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Muhich M. L., Hughes D. E., Simpson A. M., Simpson L. The monogenetic kinetoplastid protozoan, Crithidia fasciculata, contains a transcriptionally active, multicopy mini-exon sequence. Nucleic Acids Res. 1987 Apr 10;15(7):3141–3153. doi: 10.1093/nar/15.7.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Murphy W. J., Watkins K. P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986 Nov 21;47(4):517–525. doi: 10.1016/0092-8674(86)90616-1. [DOI] [PubMed] [Google Scholar]
  47. Nilsen T. W., Shambaugh J., Denker J., Chubb G., Faser C., Putnam L., Bennett K. Characterization and expression of a spliced leader RNA in the parasitic nematode Ascaris lumbricoides var. suum. Mol Cell Biol. 1989 Aug;9(8):3543–3547. doi: 10.1128/mcb.9.8.3543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Perry K. L., Watkins K. P., Agabian N. Trypanosome mRNAs have unusual "cap 4" structures acquired by addition of a spliced leader. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8190–8194. doi: 10.1073/pnas.84.23.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rose J. K., Lodish H. F. Translation in vitro of vesicular stomatitis virus mRNA lacking 5'-terminal 7-methylguanosine. Nature. 1976 Jul 1;262(5563):32–37. doi: 10.1038/262032a0. [DOI] [PubMed] [Google Scholar]
  50. Rudenko G., Bishop D., Gottesdiener K., Van der Ploeg L. H. Alpha-amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. EMBO J. 1989 Dec 20;8(13):4259–4263. doi: 10.1002/j.1460-2075.1989.tb08611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rudenko G., Chung H. M., Pham V. P., Van der Ploeg L. H. RNA polymerase I can mediate expression of CAT and neo protein-coding genes in Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3387–3397. doi: 10.1002/j.1460-2075.1991.tb04903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rudenko G., Lee M. G., Van der Ploeg L. H. The PARP and VSG genes of Trypanosoma brucei do not resemble RNA polymerase II transcription units in sensitivity to Sarkosyl in nuclear run-on assays. Nucleic Acids Res. 1992 Jan 25;20(2):303–306. doi: 10.1093/nar/20.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schnare M. N., Spencer D. F., Gray M. W. Primary structures of four novel small ribosomal RNAs from Crithidia fasciculata. Can J Biochem Cell Biol. 1983 Jan;61(1):38–45. doi: 10.1139/o83-006. [DOI] [PubMed] [Google Scholar]
  54. Sherman D. R., Janz L., Hug M., Clayton C. Anatomy of the parp gene promoter of Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3379–3386. doi: 10.1002/j.1460-2075.1991.tb04902.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Smale S. T., Baltimore D. The "initiator" as a transcription control element. Cell. 1989 Apr 7;57(1):103–113. doi: 10.1016/0092-8674(89)90176-1. [DOI] [PubMed] [Google Scholar]
  56. Spencer C. A., Groudine M. Transcription elongation and eukaryotic gene regulation. Oncogene. 1990 Jun;5(6):777–785. [PubMed] [Google Scholar]
  57. Steinberg T. H., Mathews D. E., Durbin R. D., Burgess R. R. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem. 1990 Jan 5;265(1):499–505. [PubMed] [Google Scholar]
  58. Sutton R. E., Boothroyd J. C. Evidence for trans splicing in trypanosomes. Cell. 1986 Nov 21;47(4):527–535. doi: 10.1016/0092-8674(86)90617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ullu E., Matthews K. R., Tschudi C. Temporal order of RNA-processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts. Mol Cell Biol. 1993 Jan;13(1):720–725. doi: 10.1128/mcb.13.1.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Ullu E., Tschudi C. Permeable trypanosome cells as a model system for transcription and trans-splicing. Nucleic Acids Res. 1990 Jun 11;18(11):3319–3326. doi: 10.1093/nar/18.11.3319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ullu E., Tschudi C. Trans splicing in trypanosomes requires methylation of the 5' end of the spliced leader RNA. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10074–10078. doi: 10.1073/pnas.88.22.10074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Van der Ploeg L. H., Liu A. Y., Michels P. A., De Lange T., Borst P., Majumder H. K., Weber H., Veeneman G. H., Van Boom J. RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Res. 1982 Jun 25;10(12):3591–3604. doi: 10.1093/nar/10.12.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Walder J. A., Eder P. S., Engman D. M., Brentano S. T., Walder R. Y., Knutzon D. S., Dorfman D. M., Donelson J. E. The 35-nucleotide spliced leader sequence is common to all trypanosome messenger RNA's. Science. 1986 Aug 1;233(4763):569–571. doi: 10.1126/science.3523758. [DOI] [PubMed] [Google Scholar]
  64. White T. C., Rudenko G., Borst P. Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Res. 1986 Dec 9;14(23):9471–9489. doi: 10.1093/nar/14.23.9471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wong S., Morales T. H., Neigel J. E., Campbell D. A. Genomic and transcriptional linkage of the genes for calmodulin, EF-hand 5 protein, and ubiquitin extension protein 52 in Trypanosoma brucei. Mol Cell Biol. 1993 Jan;13(1):207–216. doi: 10.1128/mcb.13.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zomerdijk J. C., Kieft R., Shiels P. G., Borst P. Alpha-amanitin-resistant transcription units in trypanosomes: a comparison of promoter sequences for a VSG gene expression site and for the ribosomal RNA genes. Nucleic Acids Res. 1991 Oct 11;19(19):5153–5158. doi: 10.1093/nar/19.19.5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zwierzynski T. A., Buck G. A. In vitro capping in Trypanosoma cruzi identifies and shows specificity for the spliced leader RNA and U-RNAs. Nucleic Acids Res. 1990 Jul 25;18(14):4197–4206. doi: 10.1093/nar/18.14.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES