Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1994 Dec 1;13(23):5779–5785. doi: 10.1002/j.1460-2075.1994.tb06916.x

The mechanism of the stringent control of lambda plasmid DNA replication.

A Szalewska-Pałasz 1, A Wegrzyn 1, A Herman 1, G Wegrzyn 1
PMCID: PMC395544  PMID: 7988574

Abstract

Lambda plasmid DNA replication is inhibited in amino acid-starved wild type Escherichia coli strains (stringent response) but not in amino acid-starved relA mutants (relaxed response). This replication is perpetuated by the replication complex containing the lambda O protein (which is protected from proteases by other elements of the complex) and inherited by one of two daughter copies after a replication round. Since a fraction of stable lambda O protein was observed in relA- and relA+ strains, and negative regulation by the lambda Cro repressor does not seem to be important in the stringent or relaxed response of lambda plasmid replication to amino acid starvation, the inhibition of lambda plasmid replication in amino acid-starved wild type strains was investigated. lambda plasmids were unable to replicate in amino acid-starved relA- bacteria treated with rifampicin. Moreover, transcription from pR, which produces mRNA for replication protein synthesis and serves as transcriptional activation of ori lambda, was significantly decreased during the stringent response as well as in non-starved cells containing increased levels of ppGpp. However, it was little or totally not affected by the relaxed response. The replacement of pR with plac (which is known to be uninhibited by ppGpp) in a lambda plasmid resulted in its DNA replication during relaxed and stringent responses as well as during overproduction of ppGpp in unstarved bacteria. We conclude that ppGpp-mediated inhibition of transcriptional activation of ori lambda is responsible for inhibition of lambda plasmid DNA replication in amino acid-starved wild type strains.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
5779

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfano C., McMacken R. Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication. J Biol Chem. 1989 Jun 25;264(18):10709–10718. [PubMed] [Google Scholar]
  2. Bejarano I., Klemes Y., Schoulaker-Schwarz R., Engelberg-Kulka H. Energy-dependent degradation of lambda O protein in Escherichia coli. J Bacteriol. 1993 Dec;175(23):7720–7723. doi: 10.1128/jb.175.23.7720-7723.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell S. P., Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992 May 14;357(6374):128–134. doi: 10.1038/357128a0. [DOI] [PubMed] [Google Scholar]
  4. Biswas S. B., Biswas E. E. Regulation of dnaB function in DNA replication in Escherichia coli by dnaC and lambda P gene products. J Biol Chem. 1987 Jun 5;262(16):7831–7838. [PubMed] [Google Scholar]
  5. Diffley J. F., Cocker J. H. Protein-DNA interactions at a yeast replication origin. Nature. 1992 May 14;357(6374):169–172. doi: 10.1038/357169a0. [DOI] [PubMed] [Google Scholar]
  6. Dodson M., Echols H., Wickner S., Alfano C., Mensa-Wilmot K., Gomes B., LeBowitz J., Roberts J. D., McMacken R. Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: localized unwinding of duplex DNA by a six-protein reaction. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7638–7642. doi: 10.1073/pnas.83.20.7638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dodson M., McMacken R., Echols H. Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda. Protein association and disassociation reactions responsible for localized initiation of replication. J Biol Chem. 1989 Jun 25;264(18):10719–10725. [PubMed] [Google Scholar]
  8. Fiil N., Friesen J. D. Isolation of "relaxed" mutants of Escherichia coli. J Bacteriol. 1968 Feb;95(2):729–731. doi: 10.1128/jb.95.2.729-731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glass R. E., Jones S. T., Ishihama A. Genetic studies on the beta subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol Gen Genet. 1986 May;203(2):265–268. doi: 10.1007/BF00333964. [DOI] [PubMed] [Google Scholar]
  10. Glass R. E., Jones S. T., Nomura T., Ishihama A. Hierarchy of the strength of Escherichia coli stringent control signals. Mol Gen Genet. 1987 Nov;210(1):1–4. doi: 10.1007/BF00337750. [DOI] [PubMed] [Google Scholar]
  11. Gottesman S., Clark W. P., de Crecy-Lagard V., Maurizi M. R. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem. 1993 Oct 25;268(30):22618–22626. [PubMed] [Google Scholar]
  12. Gottesman S., Gottesman M., Shaw J. E., Pearson M. L. Protein degradation in E. coli: the lon mutation and bacteriophage lambda N and cII protein stability. Cell. 1981 Apr;24(1):225–233. doi: 10.1016/0092-8674(81)90518-3. [DOI] [PubMed] [Google Scholar]
  13. Herman A., Wegrzyn A., Wegrzyn G. Differential replication of plasmids during stringent and relaxed response of Escherichia coli. Plasmid. 1994 Jul;32(1):89–94. doi: 10.1006/plas.1994.1049. [DOI] [PubMed] [Google Scholar]
  14. Hernandez V. J., Bremer H. Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. J Biol Chem. 1993 May 25;268(15):10851–10862. [PubMed] [Google Scholar]
  15. Hernandez V. J., Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem. 1991 Mar 25;266(9):5991–5999. [PubMed] [Google Scholar]
  16. Lagosky P. A., Chang F. N. Influence of amino acid starvation on guanosine 5'-diphosphate 3'-diphosphate basal-level synthesis in Escherichia coli. J Bacteriol. 1980 Nov;144(2):499–508. doi: 10.1128/jb.144.2.499-508.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leno G. H., Downes C. S., Laskey R. A. The nuclear membrane prevents replication of human G2 nuclei but not G1 nuclei in Xenopus egg extract. Cell. 1992 Apr 3;69(1):151–158. doi: 10.1016/0092-8674(92)90126-w. [DOI] [PubMed] [Google Scholar]
  18. Liberek K., Georgopoulos C., Zylicz M. Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6632–6636. doi: 10.1073/pnas.85.18.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lipińska B., Podhajska A., Taylor K. Synthesis and decay of lambda DNA replication proteins in minicells. Biochem Biophys Res Commun. 1980 Jan 15;92(1):120–126. doi: 10.1016/0006-291x(80)91528-4. [DOI] [PubMed] [Google Scholar]
  20. Matsubara K. Replication control system in lambda dv. Plasmid. 1981 Jan;5(1):32–52. doi: 10.1016/0147-619x(81)90076-7. [DOI] [PubMed] [Google Scholar]
  21. Mensa-Wilmot K., Carroll K., McMacken R. Transcriptional activation of bacteriophage lambda DNA replication in vitro: regulatory role of histone-like protein HU of Escherichia coli. EMBO J. 1989 Aug;8(8):2393–2402. doi: 10.1002/j.1460-2075.1989.tb08369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Metzger S., Schreiber G., Aizenman E., Cashel M., Glaser G. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):21146–21152. [PubMed] [Google Scholar]
  23. Pawłowicz A., Wegrzyn G., Taylor K. Effect of coliphage lambda P gene mutations on the stability of the lambda O protein, the initiator of lambda DNA replication. Acta Biochim Pol. 1993;40(1):29–31. [PubMed] [Google Scholar]
  24. Ryals J., Little R., Bremer H. Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J Bacteriol. 1982 Sep;151(3):1261–1268. doi: 10.1128/jb.151.3.1261-1268.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stillman B. Initiation of chromosomal DNA replication in eukaryotes. Lessons from lambda. J Biol Chem. 1994 Mar 11;269(10):7047–7050. [PubMed] [Google Scholar]
  26. Svitil A. L., Cashel M., Zyskind J. W. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem. 1993 Feb 5;268(4):2307–2311. [PubMed] [Google Scholar]
  27. Szalewska A., Wegrzyn G., Taylor K. Neither absence nor excess of lambda O initiator-digesting ClpXP protease affects lambda plasmid or phage replication in Escherichia coli. Mol Microbiol. 1994 Aug;13(3):469–474. doi: 10.1111/j.1365-2958.1994.tb00441.x. [DOI] [PubMed] [Google Scholar]
  28. Sørensen M. A., Jensen K. F., Pedersen S. High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli. J Mol Biol. 1994 Feb 18;236(2):441–454. doi: 10.1006/jmbi.1994.1156. [DOI] [PubMed] [Google Scholar]
  29. Tedin K., Bremer H. Toxic effects of high levels of ppGpp in Escherichia coli are relieved by rpoB mutations. J Biol Chem. 1992 Feb 5;267(4):2337–2344. [PubMed] [Google Scholar]
  30. Vinella D., D'Ari R. Thermoinducible filamentation in Escherichia coli due to an altered RNA polymerase beta subunit is suppressed by high levels of ppGpp. J Bacteriol. 1994 Feb;176(4):966–972. doi: 10.1128/jb.176.4.966-972.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vogel U., Sørensen M., Pedersen S., Jensen K. F., Kilstrup M. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol Microbiol. 1992 Aug;6(15):2191–2200. doi: 10.1111/j.1365-2958.1992.tb01393.x. [DOI] [PubMed] [Google Scholar]
  32. Wegrzyn G., Kwaśnik E., Taylor K. Replication of lambda plasmid in amino acid-starved strains of Escherichia coli. Acta Biochim Pol. 1991;38(1):181–186. [PubMed] [Google Scholar]
  33. Wegrzyn G., Neubauer P., Krueger S., Hecker M., Taylor K. Stringent control of replication of plasmids derived from coliphage lambda. Mol Gen Genet. 1991 Jan;225(1):94–98. doi: 10.1007/BF00282646. [DOI] [PubMed] [Google Scholar]
  34. Wegrzyn G., Pawlowicz A., Taylor K. Stability of coliphage lambda DNA replication initiator, the lambda O protein. J Mol Biol. 1992 Aug 5;226(3):675–680. doi: 10.1016/0022-2836(92)90624-s. [DOI] [PubMed] [Google Scholar]
  35. Wegrzyn G., Taylor K. Inheritance of the replication complex by one of two daughter copies during lambda plasmid replication in Escherichia coli. J Mol Biol. 1992 Aug 5;226(3):681–688. doi: 10.1016/0022-2836(92)90625-t. [DOI] [PubMed] [Google Scholar]
  36. Wojtkowiak D., Georgopoulos C., Zylicz M. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J Biol Chem. 1993 Oct 25;268(30):22609–22617. [PubMed] [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  38. Zylicz M., Ang D., Liberek K., Georgopoulos C. Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J. 1989 May;8(5):1601–1608. doi: 10.1002/j.1460-2075.1989.tb03544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zylicz M., Ang D., Liberek K., Yamamoto T., Georgopoulos C. Initiation of lambda DNA replication reconstituted with purified lambda and Escherichia coli replication proteins. Biochim Biophys Acta. 1988 Dec 20;951(2-3):344–350. doi: 10.1016/0167-4781(88)90105-4. [DOI] [PubMed] [Google Scholar]
  40. Zylicz M. The Escherichia coli chaperones involved in DNA replication. Philos Trans R Soc Lond B Biol Sci. 1993 Mar 29;339(1289):271–278. doi: 10.1098/rstb.1993.0025. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES