Skip to main content
Frontiers in Neural Circuits logoLink to Frontiers in Neural Circuits
. 2014 Mar 17;8:21. doi: 10.3389/fncir.2014.00021

Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease

Cristina Miguelez 1,2, Teresa Morera-Herreras 1, Maria Torrecilla 1, Jose A Ruiz-Ortega 1,2, Luisa Ugedo 1,*
PMCID: PMC3955837  PMID: 24672433

Abstract

The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4–7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.

Keywords: 5-HT, basal ganglia, electrophysiology, Parkinson's disease, L-DOPA induced dyskinesia


Serotonergic innervation in the brain originates from the raphe nuclei. Both, the medial and the dorsal raphe nucleus (DRN), project to common areas implicated in motor control, such as the thalamus. Nevertheless, the basal ganglia (BG) nuclei receive serotonergic afferences coming prevalently from the DRN (reviewed in Di Matteo et al., 2008). The BG contain serotonin (5-HT) and its metabolite 5-hydroxy-indolacetic acid (5-HIAA) (Palkovits et al., 1974; Saavedra, 1977; Lavoie and Parent, 1990), 5-HT transporter (SERT) and serotonergic receptors (from 5-HT1 to 5-HT7). These serotonergic receptors are unevenly expressed along the BG, and their distribution also differs between species. Here, we will review the evidences supporting the serotonergic system as a modulator of the BG functionality. Both physiological and pathological conditions will be analyzed from the basic and clinical point of view.

Physiological serotonergic modulation of the basal ganglia

In accordance with its neuroanatomical distribution (as summarized in Table 1), 5-HT physiologically modulates BG nuclei activity by acting on serotonergic receptors.

Table 1.

Localization and expression density of serotonergic receptors in the basal ganglia of healthy brains of rodents, monkeys and humans.

GPe/GPi(EP) Striatum STN SNc/SNr References
5-HT1A +r +r +r +r rLanfumey and Hamon, 2000
+m +m(matrix) +m +m mFrechilla et al., 2001; mHuot et al., 2012a
+h ++m(striosome)
+h hHuot et al., 2012b
5-HT1B +++r ++r +++r +++r rBruinvels et al., 1993
+++h ++h +++h hVarnas et al., 2004a
5-HT2A ++r ++r +h +r rPazos et al., 1985
+m +m +m mHuot et al., 2012c
++/+h ++h ++/+h hHoyer et al., 1986; hPazos et al., 1987; hHall et al., 2000; hVarnas et al., 2004a
5-HT2C ++r ++r +++r +++r(c) rMengod et al., 1990; rPompeiano et al., 1994; rAbramowski et al., 1995; rClemett et al., 2000
+++h +++h +++h hPazos et al., 1987; hLopez-Gimenez et al., 2001
5-HT3 +r +r rKilpatrick et al., 1987; rGehlert et al., 1993
+++h ++h hBufton et al., 1993
5-HT4 +++r +++r +++r r,mJakeman et al., 1994; rNirogi et al., 2013
+++m +++m +++m
+++h +++h +++h hBonaventure et al., 2000; hVarnas et al., 2003, 2004a
5-HT5A +r +r ++r +++r rOliver et al., 2000
5-HT6 +++r ++r rGerard et al., 1997
+++h ++h hKohen et al., 1996
5-HT7 +r +r +h +r rHorisawa et al., 2013
+h +h r,hMartin-Cora and Pazos, 2004
hVarnas et al., 2004b

+++, strong; ++, moderate; +, weak/r, rodent; m, monkey; h, human. EP, entopeduncular nucleus; GPe, external segment of the globus pallidus; GPi, internal segment of the globus pallidus; STN, subthalamic nucleus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata.

Striatum

The striatum is the main input nucleus of the BG and a key neural substrate for motor function. Several studies have shown that 5-HT affects striatal function. In fact, both DRN stimulation and local administration of 5-HT into the striatum inhibit the vast majority of the striatal cells (Olpe and Koella, 1977; Davies and Tongroach, 1978; Yakel et al., 1988). However, by performing intracellular recordings, some researchers have reported striatal excitatory postsynaptic potentials after DRN stimulation, as well as a 5-HT-induced increase in firing rate of medium spiny neurons (MSN) (Vandermaelen et al., 1979; Park et al., 1982; Stefani et al., 1990; Wilms et al., 2001). Stimulation of presynaptic 5-HT1A and 5-HT1B receptors inhibits striatal 5-HT release (Gerber et al., 1988; Knobelman et al., 2000), and these receptors also control the release of other neurotransmitters in the striatum. Accordingly, 5-HT1A receptor activation decreases glutamate release from corticostriatal projections (Antonelli et al., 2005; Mignon and Wolf, 2005; Dupre et al., 2011, 2013). On the other hand, activation of 5-HT1B receptors indirectly stimulates the substantia nigra pars compacta (SNc) by decreasing GABA release from the substantia nigra pars reticulata (SNr), what consequently leads to increasing striatal dopamine levels (Gerber et al., 1988).

The 5-HT2 receptor family produces an inhibitory action on striatal neuron activity, mainly by modulating MSN (el Mansari et al., 1994; el Mansari and Blier, 1997). Moreover, Rueter et al. (2000) have shown that 5-HT2C receptors exert tonic inhibitory control over MSN membrane excitability. Other in vivo studies, however, have shown contradictory results suggesting that the effect of serotonergic drugs depends on the area of the striatum analyzed (Wilms et al., 2001). 5-HT2 receptor activation indirectly reduces the activity of striatal MSN by enhancing the inhibitory tone of cholinergic interneurons over these output neurons. The increased release of acetylcholine is due to activation of cholinergic interneurons mainly through 5-HT2C receptors, although the involvement of 5-HT6 and 5-HT7 receptors has also been demonstrated (Bonsi et al., 2007; Blomeley and Bracci, 2009). In addition, the activation of 5-HT2C receptors located on fast-spiking interneurons increases their excitability, causing an enhancement of GABAergic postsynaptic inhibition that also decreases the activity of striatal projecting neurons (Blomeley and Bracci, 2009).

Subthalamic nucleus

5-HT exerts a complex effect in the subthalamic nucleus (STN) that is considered to be a powerful excitatory drive in the BG motor circuit. Both pharmacological lesion of the DRN and 5-HT depletion increase STN firing frequency and burst activity in vivo (Liu et al., 2007; Aristieta et al., 2013). Decreased and increased excitability have been reported with the activation of 5-HT1A and 5-HT2C, and 5-HT4 receptors, respectively (Flores et al., 1995; Stanford et al., 2005; Xiang et al., 2005; Shen et al., 2007; Aristieta et al., 2013). In addition, activation of 5-HT1B receptors inhibits synaptic activity of STN neurons (Barwick et al., 2000; Shen and Johnson, 2008).

Globus pallidus

The globus pallidus (GP) has two segments, the external GP (GPe), which has a central position in the BG loop, and the internal GP (GPi/EP), which, together with the SNr, form the output structures of the BG. In the GPe, 5-HT depletion decreases the firing frequency and increases the proportion of bursty and irregular neurons (Delaville et al., 2012b). In contrast, local application of 5-HT or selective serotonin reuptake inhibitor (SSRI) administration excites most of GPe neurons (Querejeta et al., 2005; Zhang et al., 2010; Wang et al., 2013). These findings have been further confirmed by a patch-clamp recording study in which 5-HT perfusion produced a reversible depolarization of the GP neuron membrane potential, thereby increasing the firing rate of these neurons (Chen et al., 2008). In vivo studies indicate that the stimulatory effect of 5-HT on GPe neurons is mediated by the activation of 5-HT4 or 5-HT7 postsynaptic receptors, but not 5-HT2C and 5-HT3 receptors (Bengtson et al., 2004; Kita et al., 2007; Chen et al., 2008; Hashimoto and Kita, 2008). In contrast, 5-HT can decrease the presynaptic release of glutamate and GABA from the subthalamopallidal and striatopallidal terminals, respectively, through 5-HT1B receptors (Querejeta et al., 2005). In addition, 5-HT has been proposed to modulate the inhibitory and excitatory responses in GPe electrical stimulation of the motor cortex in awake monkeys (Kita et al., 2007). In fact, 5-HT suppresses GABAergic inhibitory responses to cortical stimulation through presynaptic 5-HT1B receptors and glutamatergic excitatory responses involving presynaptic or postsynaptic 5-HT1A receptors (Kita et al., 2007).

Few studies have been conducted to investigate the effects of 5-HT on the GPi/EP nucleus. Recently, it has been shown that intra-EP administration of a 5-HT2 receptor agonist promotes oral movements and inhibits EP neuronal activity in dopamine-depleted rats (Lagiere et al., 2013).

Substantia nigra

Together with the GPi, the SNr constitutes the principal output nucleus of the BG and plays a relevant role in movement initiation. In this nucleus, 5-HT induces mostly an inhibitory effect in vivo (Dray et al., 1976; Collingridge and Davies, 1981), while 5-HT depletion decreases firing rate and increases burst activity of SNr neurons (Delaville et al., 2012a). Electrophysiological studies carried out in brain slices indicate that 5-HT not only excites SNr neurons acting directly on 5-HT2C receptors (Rick et al., 1995; Stanford and Lacey, 1996; Stanford et al., 2005) but also disinhibits SNr neurons by reducing GABA release from striatonigral terminals via presynaptic 5-HT1B receptor stimulation (Stanford and Lacey, 1996). A recent electrophysiological study reveals that presynaptic 5-HT1B receptor activation gates STN excitatory inputs to the SNr and reduces burst firing activity of the SNr, and therefore may be critically involved in movement control (Ding et al., 2013).

The role of 5-HT transmission in modulating the activity of dopaminergic SNc neurons is still unclear. Although the effect of 5-HT input seems to be inhibitory (Sinton and Fallon, 1988; Arborelius et al., 1993), chemical lesion of the DRN does not significantly alter SNc activity and DRN electrical stimulation only inhibits spontaneous activity in a subset of neurons (Kelland et al., 1990). Further, SSRI administration does not modulate SNc activity (Prisco and Esposito, 1995), and 5-HT depletion has been shown to either decrease or have no significant effect on SNc neuron excitability (Kelland et al., 1990; Minabe et al., 1996). Non-selective 5-HT2 receptor antagonists stimulate SNc neurons (Ugedo et al., 1989), whereas 5-HT4 receptors selectively prevents the stimulatory effect induced by haloperidol in this brain area (Lucas et al., 2001).

Implication of the serotonergic system in Parkinson's disease

In the parkinsonian state and subsequent replacement therapy with L-DOPA, the serotonergic system adapts to the lack of dopamine by adopting anatomical and functional transformations.

Serotonergic system in Parkinson's disease and parkinsonian animal models

Parkinson's disease (PD) is a neurodegenerative disease typified by loss of dopaminergic neurons in the SNc and subsequent dopamine depletion in the striatum. In patients with PD, it is generally supported that serotonergic neurotransmission decreases in advanced stages of the disease (Haapaniemi et al., 2001; Kerenyi et al., 2003) since the DRN, in addition to other nuclei, undergoes degeneration (Halliday et al., 1990; Jellinger, 1990). Moreover, 5-HT and 5-HIAA concentrations, as well as SERT expression, are reduced in several BG nuclei (Scatton et al., 1983; Raisman et al., 1986; D'Amato et al., 1987; Chinaglia et al., 1993; Kerenyi et al., 2003; Guttman et al., 2007; Kish et al., 2008; Rylander et al., 2010). Regarding receptor expression, 5-HT1A is decreased and 5-HT2C is increased in some BG nuclei (Fox and Brotchie, 2000; Ballanger et al., 2012) (Figure 1). Other serotonergic receptor (5-HT1B/D, 5-HT3, and 5-HT4) densities are however not modified by the dopaminergic loss (Steward et al., 1993; Reynolds et al., 1995; Wong et al., 1996; Castro et al., 1998). Overall, this dysfunctional serotonergic neurotransmission can indeed be linked to the high prevalence of depressive symptoms in parkinsonian patients (Reijnders et al., 2008).

Figure 1.

Figure 1

Simplified diagram of the basal ganglia circuits and altered serotonergic receptor expression in pathological states. Changes found in serotonergic receptor density in parkinsonian (left boxes) and dyskinetic (right boxes) patients or animals models compared to control conditions. Each nucleus and its modifications in receptor expression are encoded with the same color. GABAergic inhibitory pathways are represented in dark blue and glutamatergic excitatory pathways in red. Modulatory dopaminergic connections are indicated in green and serotonergic pathways in brown. DRN, dorsal raphe nucleus; GPi (EP), internal segment of the globus pallidus (entopeduncular nucleus); GPe, external segment of the globus pallidus; STN, subthalamic nucleus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata. r, rodent; m, monkey; h, human.

In animal models of parkinsonism, the changes occurring after dopaminergic lesion have not been equally reproduced by different research groups. The discrepancies between these studies may be due to different protocol paradigms used for inducing the parkinsonian state, including the age of the animals, site of injection, concentration of the toxin, and the time between surgery and performing the studies. Several researchers have reported hyperinnervation (Zhou et al., 1991; Rozas et al., 1998; Balcioglu et al., 2003; Maeda et al., 2003), while others found no sprouting (Prinz et al., 2013), or even a decrease in striatal serotonergic fibers after dopaminergic damage (Takeuchi et al., 1991; Rylander et al., 2010). Along the same lines, striatal 5-HT levels have been found to be increased (Commins et al., 1989; Zhou et al., 1991; Karstaedt et al., 1994; Balcioglu et al., 2003), unchanged (Breese et al., 1984; Carta et al., 2006), or decreased (Frechilla et al., 2001; Aguiar et al., 2006, 2008). As detailed in Figure 1, studies performed in different animal models report unequal modification in serotonergic receptor expression along the BG nuclei. On the other hand, the DRN also suffers adaptative changes after the dopaminergic degeneration, such as increased 5-HT1A expression in MPTP monkeys (Frechilla et al., 2001) or weaker inhibitory effects of 5-HT1A agonists on neuron activity in rats (Wang et al., 2009). Electrophysiological studies using different 6-hydroxydopamine (6-OHDA) lesion models have shown increased basal firing rate of serotonergic cells in the parkinsonian state (Zhang et al., 2007a; Kaya et al., 2008; Wang et al., 2009; Prinz et al., 2013), while others show decreases (Guiard et al., 2008) or no changes (Miguelez et al., 2011).

In spite of the disparity of results, it seems clear that to varying extents, the serotonergic system is affected in parkinsonian conditions. More clinical and preclinical studies using the same experimental models and a greater amount of samples would help to clarify the role of the serotonergic system in each stage of PD.

Serotonergic system in L-DOPA induced dyskinesia

The dopamine precursor L-DOPA is the most effective pharmacological treatment for PD, but it does not stop the progression of the disease. Moreover, long-term administration of L-DOPA induces motor complications, known as L-DOPA induced dyskinesias (LID), which have been related to adaptive changes of the serotonergic system. For example, a recent publication revealed that patients who had developed dyskinetic movements showed significant serotonergic hyperinnervation in the GPe and caudate, in comparison to non-dyskinetic individuals (Rylander et al., 2010). Such sprouting was directly correlated with the severity of motor complications. In contrast, other studies have shown that striatal postmortem content of 5-HT and SERT levels did not differ significantly between dyskinetic and non-dyskinetic cases (Calon et al., 2003; Kish et al., 2008), and chronic L-DOPA treatment did not influence SERT expression (Politis et al., 2010). As for serotonergic receptors, a study performed in PD patients that followed L-DOPA treatment showed increased 5-HT1A expression in several cortical areas, while no modification in the striatum, GP, SN, or thalamus was reported (Huot et al., 2012b). In the SNr, 5-HT2C expression has also been observed to be raised in those patients (Fox and Brotchie, 2000).

The use of animal models has provided valuable data to better understand the physiopathological mechanisms of LID. The most used models include non-human primates injected with MPTP and rodent-models with hemilateral dopaminergic loss chronically treated with L-DOPA. Although differences may arise from the methodological protocols, such models are considered to reproduce resembling symptoms and molecular changes to those observed in PD patients and efficiently respond to antidyskinetic therapy (Iderberg et al., 2012). It is now well known that exogenously administered L-DOPA can be stored, transformed into dopamine, and released from serotonergic terminals to multiple brain regions, including the striatum, in an uncontrolled manner, producing a non-physiological stimulation of sensitized dopaminergic receptors (Arai et al., 1995; Carta et al., 2007; Yamada et al., 2007; Navailles et al., 2010b, 2013). Lesions of the DRN consistently prevent the expression of dyskinesia (Carta et al., 2007; Eskow et al., 2009) or dopamine release after an acute L-DOPA injection (Navailles et al., 2010b). This interaction between serotonergic and dopaminergic systems is reciprocal, as 5-HT levels also decrease after L-DOPA administration, and L-DOPA itself can antagonize the effect of serotonergic agents (Bartholini et al., 1968; Everett and Borcherding, 1970; Commissiong and Sedgwick, 1979; Borah and Mohanakumar, 2007; Navailles et al., 2010a; Riahi et al., 2011; Miguelez et al., 2013). In dyskinetic animals, SERT expression has been found to be up-regulated (Rylander et al., 2010), not modified (Prinz et al., 2013), or decreased (Nevalainen et al., 2011). Serotonergic receptor expression in the BG is unevenly modified with L-DOPA treatment: 5-HT2A and 5-HT1B receptor expression is increased (Zhang et al., 2008; Riahi et al., 2011, 2013; Huot et al., 2012c), while 5-HT1A receptor expression is increased (Huot et al., 2012a) or does not change (Riahi et al., 2012) (Figure 1). The primary modifications occurring in the serotonergic system are thought to take place at terminal levels because no changes in the number of serotonergic neurons (Rylander et al., 2010; Inden et al., 2012) or 5-HT or dopamine levels in the DRN of dyskinetic rats have been reported (Bishop et al., 2012).

Clinical relevance

Although motor complications appear in the majority of the patients that receive chronic treatment with L-DOPA, an effective pharmacological tool for avoiding or treating LID expression is still missing. In this sense, 5-HT1A/1C receptors, which are involved in the regulation of the ectopic dopamine release, are envisaged as promising targets. In 6-OHDA-lesioned rats and MPTP monkeys chronically treated with L-DOPA, 5-HT1A/1C receptor agonists reduce expression of LID without impairing L-DOPA improvement in motor performance (Bibbiani et al., 2001; Ba et al., 2007; Dupre et al., 2007). Furthermore, administration of the 5-HT1A agonist, 8-OH-DPAT, also prevents L-DOPA-induced increment of extracellular dopamine (Nahimi et al., 2012). Other drugs that modulate 5-HT neurotransmission have shown efficacy over LID. Thus, a recent study has revealed that the treatment with the precursor of 5-HT, 5-hydroxytryptophan reduces the appearance of LID in L-DOPA-primed rats (Tronci et al., 2013). The 5-HT2A receptor inverse agonist ACP-103 reduces tremor in rodents and LID in MPTP monkeys (Vanover et al., 2008). Acute and prolonged SSRI treatment attenuates the severity and development of LID in L-DOPA-primed and naive rats without interfering with motor improvement, which may be mediated in part by 5-HT1A receptors (Bishop et al., 2012; Conti et al., 2014). In contrast, in PD patients, while buspirone, a partial 5-HT1A agonist, ameliorates dyskinesia (Kleedorfer et al., 1991; Bonifati et al., 1994), sarizotan, another 5-HT1A receptor agonist, failed to improve it compared with placebo (Goetz et al., 2008) and significantly increased off time (Goetz et al., 2007).

Concluding remarks

The effects of 5-HT in the BG depend on the specific nucleus and its receptor distribution. 5-HT induces an inhibition of MSN in the striatum using either direct or indirect activation of serotonergic receptors, as well as in the STN and SNr in vivo. In contrast, in the GPe the overall effect of 5-HT is excitatory. In other nuclei such as the EP or SNc the net effect is still not well understood.

The serotonergic physiological modulation may be modified in pathological conditions where the BG nuclei are highly affected. Here, we provide data regarding the alteration of the serotonergic system in PD, pointing out important discrepancies about the relationship between the serotonergic and dopaminergic systems in pathological states. In this concern, key methodological differences such as the use of different animal species and models, pharmacological treatments or stage of the disease in PD patients may explain these inconsistencies.

In summary, the serotonergic system is implicated in the modulation of the BG activity and in the etiopathology of PD and LID. However, although in preclinical studies results indicate that serotonergic drugs may be suitable for treating LID, this fact has yet to be supported by clinical trials. Accordingly, further investigation is required to determine the most suitable serotonergic target to treat these motor disturbances.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This study was supported by the grants IT747-13, PI12/00613, UPV/EHU UFI11/32.

References

  1. Abramowski D., Rigo M., Duc D., Hoyer D., Staufenbiel M. (1995). Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 34, 1635–1645 10.1016/0028-3908(95)00138-7 [DOI] [PubMed] [Google Scholar]
  2. Aguiar L. M., Macedo D. S., Vasconcelos S. M., Oliveira A. A., De Sousa F. C., Viana G. S. (2008). CSC, an adenosine A(2A) receptor antagonist and MAO B inhibitor, reverses behavior, monoamine neurotransmission, and amino acid alterations in the 6-OHDA-lesioned rats. Brain Res. 1191, 192–199 10.1016/j.brainres.2007.11.051 [DOI] [PubMed] [Google Scholar]
  3. Aguiar L. M., Nobre H. V., Jr., Macedo D. S., Oliveira A. A., Freitas R. M., Vasconcelos S. M., et al. (2006). Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacol. Biochem. Behav. 84, 415–419 10.1016/j.pbb.2006.05.027 [DOI] [PubMed] [Google Scholar]
  4. Antonelli T., Fuxe K., Tomasini M. C., Bartoszyk G. D., Seyfried C. A., Tanganelli S., et al. (2005). Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58, 193–199 10.1002/syn.20195 [DOI] [PubMed] [Google Scholar]
  5. Arai R., Karasawa N., Geffard M., Nagatsu I. (1995). L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci. Lett. 195, 195–198 10.1016/0304-3940(95)11817-G [DOI] [PubMed] [Google Scholar]
  6. Arborelius L., Chergui K., Murase S., Nomikos G. G., Hook B. B., Chouvet G., et al. (1993). The 5-HT1A receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn Schmiedebergs Arch. Pharmacol. 347, 353–362 10.1007/BF00165384 [DOI] [PubMed] [Google Scholar]
  7. Aristieta A., Morera-Herreras T., Ruiz-Ortega J. A., Miguelez C., Vidaurrazaga I., Arrue A., et al. (2013). Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration. Psychopharmacology (Berl.). [Epub ahead of print]. 10.1007/s00213-013-3333-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ba M., Kong M., Ma G., Yang H., Lu G., Chen S., et al. (2007). Cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Brain Res. 1127, 177–184 10.1016/j.brainres.2006.10.020 [DOI] [PubMed] [Google Scholar]
  9. Balcioglu A., Zhang K., Tarazi F. I. (2003). Dopamine depletion abolishes apomorphine- and amphetamine-induced increases in extracellular serotonin levels in the striatum of conscious rats: a microdialysis study. Neuroscience 119, 1045–1053 10.1016/S0306-4522(03)00219-7 [DOI] [PubMed] [Google Scholar]
  10. Ballanger B., Klinger H., Eche J., Lerond J., Vallet A. E., Le Bars D., et al. (2012). Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease. Mov. Disord. 27, 84–89 10.1002/mds.23895 [DOI] [PubMed] [Google Scholar]
  11. Bartholini G., Da Prada M., Pletscher A. (1968). Decrease of cerebral 5-hydroxytryptamine by 3,4-dihydroxyphenylalanine after inhibition of extracerebral decarboxylase. J. Pharm. Pharmacol. 20, 228–229 10.1111/j.2042-7158.1968.tb09726.x [DOI] [PubMed] [Google Scholar]
  12. Barwick V. S., Jones D. H., Richter J. T., Hicks P. B., Young K. A. (2000). Subthalamic nucleus microinjections of 5-HT2 receptor antagonists suppress stereotypy in rats. Neuroreport 11, 267–270 10.1097/00001756-200002070-00009 [DOI] [PubMed] [Google Scholar]
  13. Bengtson C. P., Lee D. J., Osborne P. B. (2004). Opposing electrophysiological actions of 5-HT on noncholinergic and cholinergic neurons in the rat ventral pallidum in vitro. J. Neurophysiol. 92, 433–443 10.1152/jn.00543.2003 [DOI] [PubMed] [Google Scholar]
  14. Bibbiani F., Oh J. D., Chase T. N. (2001). Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57, 1829–1834 10.1212/WNL.57.10.1829 [DOI] [PubMed] [Google Scholar]
  15. Bishop C., George J. A., Buchta W., Goldenberg A. A., Mohamed M., Dickinson S. O., et al. (2012). Serotonin transporter inhibition attenuates l-DOPA-induced dyskinesia without compromising l-DOPA efficacy in hemi-parkinsonian rats. Eur. J. Neurosci. 36, 2839–2848 10.1111/j.1460-9568.2012.08202.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Blomeley C. P., Bracci E. (2009). Serotonin excites fast-spiking interneurons in the striatum. Eur. J. Neurosci. 29, 1604–1614 10.1111/j.1460-9568.2009.06725.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bonaventure P., Hall H., Gommeren W., Cras P., Langlois X., Jurzak M., et al. (2000). Mapping of serotonin 5-HT(4) receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse 36, 35–46 [DOI] [PubMed] [Google Scholar]
  18. Bonifati V., Fabrizio E., Cipriani R., Vanacore N., Meco G. (1994). Buspirone in levodopa-induced dyskinesias. Clin. Neuropharmacol. 17, 73–82 10.1097/00002826-199402000-00008 [DOI] [PubMed] [Google Scholar]
  19. Bonsi P., Cuomo D., Ding J., Sciamanna G., Ulrich S., Tscherter A., et al. (2007). Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology 32, 1840–1854 10.1038/sj.npp.1301294 [DOI] [PubMed] [Google Scholar]
  20. Borah A., Mohanakumar K. P. (2007). Long-term L-DOPA treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell. Mol. Neurobiol. 27, 985–996 10.1007/s10571-007-9213-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Breese G. R., Baumeister A. A., McCown T. J., Emerick S. G., Frye G. D., Crotty K., et al. (1984). Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J. Pharmacol. Exp. Ther. 231, 343–354 [PMC free article] [PubMed] [Google Scholar]
  22. Bruinvels A. T., Palacios J. M., Hoyer D. (1993). Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 347, 569–582 10.1007/BF00166939 [DOI] [PubMed] [Google Scholar]
  23. Bufton K. E., Steward L. J., Barber P. C., Barnes N. M. (1993). Distribution and characterization of the [3H]granisetron-labelled 5-HT3 receptor in the human forebrain. Neuropharmacology 32, 1325–1331 10.1016/0028-3908(93)90027-Z [DOI] [PubMed] [Google Scholar]
  24. Calon F., Morissette M., Rajput A. H., Hornykiewicz O., Bedard P. J., Di Paolo T. (2003). Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Mov. Disord. 18, 241–253 10.1002/mds.10343 [DOI] [PubMed] [Google Scholar]
  25. Carta M., Carlsson T., Kirik D., Bjorklund A. (2007). Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130, 1819–1833 10.1093/brain/awm082 [DOI] [PubMed] [Google Scholar]
  26. Carta M., Lindgren H. S., Lundblad M., Stancampiano R., Fadda F., Cenci M. A. (2006). Role of striatal L-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J. Neurochem. 96, 1718–1727 10.1111/j.1471-4159.2006.03696.x [DOI] [PubMed] [Google Scholar]
  27. Castro M. E., Pascual J., Romon T., Berciano J., Figols J., Pazos A. (1998). 5-HT1B receptor binding in degenerative movement disorders. Brain Res. 790, 323–328 10.1016/S0006-8993(97)01566-7 [DOI] [PubMed] [Google Scholar]
  28. Chen L., Yung K. K., Chan Y. S., Yung W. H. (2008). 5-HT excites globus pallidus neurons by multiple receptor mechanisms. Neuroscience 151, 439–451 10.1016/j.neuroscience.2007.11.003 [DOI] [PubMed] [Google Scholar]
  29. Chinaglia G., Landwehrmeyer B., Probst A., Palacios J. M. (1993). Serotoninergic terminal transporters are differentially affected in Parkinson's disease and progressive supranuclear palsy: an autoradiographic study with [3H]citalopram. Neuroscience 54, 691–699 10.1016/0306-4522(93)90240-G [DOI] [PubMed] [Google Scholar]
  30. Clemett D. A., Punhani T., Duxon M. S., Blackburn T. P., Fone K. C. (2000). Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39, 123–132 10.1016/S0028-3908(99)00086-6 [DOI] [PubMed] [Google Scholar]
  31. Collingridge G. L., Davies J. (1981). The influence of striatal stimulation and putative neurotransmitters on identified neurones in the rat substantia nigra. Brain Res. 212, 345–359 10.1016/0006-8993(81)90467-4 [DOI] [PubMed] [Google Scholar]
  32. Commins D. L., Shaughnessy R. A., Axt K. J., Vosmer G., Seiden L. S. (1989). Variability among brain regions in the specificity of 6-hydroxydopamine (6-OHDA)-induced lesions. J. Neural Transm. 77, 197–210 10.1007/BF01248932 [DOI] [PubMed] [Google Scholar]
  33. Commissiong J. W., Sedgwick E. M. (1979). Depletion of 5-HT by L-DOPA in spinal cord and brainstem of rat. Life Sci. 25, 83–86 10.1016/0024-3205(79)90493-4 [DOI] [PubMed] [Google Scholar]
  34. Compan V., Daszuta A., Salin P., Sebben M., Bockaert J., Dumuis A. (1996). Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. Eur. J. Neurosci. 8, 2591–2598 10.1111/j.1460-9568.1996.tb01553.x [DOI] [PubMed] [Google Scholar]
  35. Conti M. M., Ostock C. Y., Lindenbach D., Goldenberg A. A., Kampton E., Dell'isola R., et al. (2014). Effects of prolonged selective serotonin reuptake inhibition on the development and expression of l-DOPA-induced dyskinesia in hemi-parkinsonian rats. Neuropharmacology 77, 1–8 10.1016/j.neuropharm.2013.09.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. D'Amato R. J., Zweig R. M., Whitehouse P. J., Wenk G. L., Singer H. S., Mayeux R., et al. (1987). Aminergic systems in Alzheimer's disease and Parkinson's disease. Ann. Neurol. 22, 229–236 10.1002/ana.410220207 [DOI] [PubMed] [Google Scholar]
  37. Davies J., Tongroach P. (1978). Neuropharmacological studies on the nigro-striatal and raphe-striatal system in the rat. Eur. J. Pharmacol. 51, 91–100 10.1016/0014-2999(78)90333-3 [DOI] [PubMed] [Google Scholar]
  38. Delaville C., Chetrit J., Abdallah K., Morin S., Cardoit L., De Deurwaerdere P., et al. (2012a). Emerging dysfunctions consequent to combined monoaminergic depletions in Parkinsonism. Neurobiol. Dis. 45, 763–773 10.1016/j.nbd.2011.10.023 [DOI] [PubMed] [Google Scholar]
  39. Delaville C., Navailles S., Benazzouz A. (2012b). Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 202, 424–433 10.1016/j.neuroscience.2011.11.024 [DOI] [PubMed] [Google Scholar]
  40. Di Matteo V., Pierucci M., Esposito E., Crescimanno G., Benigno A., Di Giovanni G. (2008). Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. Prog. Brain Res. 172, 423–463 10.1016/S0079-6123(08)00921-7 [DOI] [PubMed] [Google Scholar]
  41. Ding S., Li L., Zhou F. M. (2013). Presynaptic serotonergic gating of the subthalamonigral glutamatergic projection. J. Neurosci. 33, 4875–4885 10.1523/JNEUROSCI.4111-12.2013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Dray A., Gonye T. J., Oakley N. R. (1976). Caudate stimulation and substantia nigra activity in the rat. J. Physiol. 259, 825–849 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dupre K. B., Eskow K. L., Negron G., Bishop C. (2007). The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res. 1158, 135–143 10.1016/j.brainres.2007.05.005 [DOI] [PubMed] [Google Scholar]
  44. Dupre K. B., Ostock C. Y., Eskow Jaunarajs K. L., Button T., Savage L. M., et al. (2011). Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp. Neurol. 229, 288–299 10.1016/j.expneurol.2011.02.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dupre K. B., Ostock C. Y., George J. A., Eskow Jaunarajs K. L., Hueston C. M., Bishop C. (2013). Effects of 5-HT1A receptor stimulation on D1 receptor agonist-induced striatonigral activity and dyskinesia in hemiparkinsonian rats. ACS Chem. Neurosci. 4, 747–760 10.1021/cn300234z [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. el Mansari M., Blier P. (1997). In vivo electrophysiological characterization of 5-HT receptors in the guinea pig head of caudate nucleus and orbitofrontal cortex. Neuropharmacology 36, 577–588 10.1016/S0028-3908(97)00035-X [DOI] [PubMed] [Google Scholar]
  47. el Mansari M., Radja F., Ferron A., Reader T. A., Molina-Holgado E., Descarries L. (1994). Hypersensitivity to serotonin and its agonists in serotonin-hyperinnervated neostriatum after neonatal dopamine denervation. Eur. J. Pharmacol. 261, 171–178 10.1016/0014-2999(94)90316-6 [DOI] [PubMed] [Google Scholar]
  48. Eskow K. L., Dupre K. B., Barnum C. J., Dickinson S. O., Park J. Y., Bishop C. (2009). The role of the dorsal raphe nucleus in the development, expression, and treatment of L-dopa-induced dyskinesia in hemiparkinsonian rats. Synapse 63, 610–620 10.1002/syn.20630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Everett G. M., Borcherding J. W. (1970). L-DOPA: effect on concentrations of dopamine, norepinephrine, and serotonin in brains of mice. Science 168, 847–850 10.1126/science.168.3933.849 [DOI] [PubMed] [Google Scholar]
  50. Flores G., Rosales M. G., Hernandez S., Sierra A., Aceves J. (1995). 5-Hydroxytryptamine increases spontaneous activity of subthalamic neurons in the rat. Neurosci. Lett. 192, 17–20 10.1016/0304-3940(95)11597-P [DOI] [PubMed] [Google Scholar]
  51. Fox S. H., Brotchie J. M. (2000). 5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson's disease. Mov. Disord. 15, 1064–1069 10.1002/1531-8257(200011)15:6%3C1064::AID-MDS1002%3E3.0.CO;2-C [DOI] [PubMed] [Google Scholar]
  52. Frechilla D., Cobreros A., Saldise L., Moratalla R., Insausti R., Luquin M., et al. (2001). Serotonin 5-HT(1A) receptor expression is selectively enhanced in the striosomal compartment of chronic parkinsonian monkeys. Synapse 39, 288–296 [DOI] [PubMed] [Google Scholar]
  53. Gehlert D. R., Schober D. A., Gackenheimer S. L., Mais D. E., Ladouceur G., Robertson D. W. (1993). Synthesis and evaluation of [125I]-(S)-iodozacopride, a high affinity radioligand for 5HT3 receptors. Neurochem. Int. 23, 373–383 10.1016/0197-0186(93)90081-F [DOI] [PubMed] [Google Scholar]
  54. Gerard C., Martres M. P., Lefevre K., Miquel M. C., Verge D., Lanfumey L., et al. (1997). Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res. 746, 207–219 10.1016/S0006-8993(96)01224-3 [DOI] [PubMed] [Google Scholar]
  55. Gerber R., Altar C. A., Liebman J. M. (1988). Rotational behavior induced by 8-hydroxy-DPAT, a putative 5HT-1A agonist, in 6-hydroxydopamine-lesioned rats. Psychopharmacology (Berl) 94, 178–182 10.1007/BF00176841 [DOI] [PubMed] [Google Scholar]
  56. Goetz C. G., Damier P., Hicking C., Laska E., Müller T., Olanow C. W., et al. (2007). Sarizotan as a treatment for dyskinesias in Parkinson's disease: double-blind placebo-controlled trial. Mov. Disord. 22, 179–186 10.1002/mds.21226 [DOI] [PubMed] [Google Scholar]
  57. Goetz C. G., Laska E., Hicking C., Damier P., Muller T., Nutt J., et al. (2008). Placebo influences on dyskinesia in Parkinson's disease. Mov. Disord. 23, 700–707 10.1002/mds.21897 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Guiard B. P., el Mansari M., Merali Z., Blier P. (2008). Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int. J. Neuropsychopharmacol. 11, 625–639 10.1017/S1461145707008383 [DOI] [PubMed] [Google Scholar]
  59. Guttman M., Boileau I., Warsh J., Saint-Cyr J. A., Ginovart N., Mccluskey T., et al. (2007). Brain serotonin transporter binding in non-depressed patients with Parkinson's disease. Eur. J. Neurol. 14, 523–528 10.1111/j.1468-1331.2007.01727.x [DOI] [PubMed] [Google Scholar]
  60. Haapaniemi T. H., Ahonen A., Torniainen P., Sotaniemi K. A., Myllyla V. V. (2001). [123I]beta-CIT SPECT demonstrates decreased brain dopamine and serotonin transporter levels in untreated parkinsonian patients. Mov. Disord. 16, 124–130 [DOI] [PubMed] [Google Scholar]
  61. Hall H., Farde L., Halldin C., Lundkvist C., Sedvall G. (2000). Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38, 421–431 [DOI] [PubMed] [Google Scholar]
  62. Halliday G. M., Blumbergs P. C., Cotton R. G., Blessing W. W., Geffen L. B. (1990). Loss of brainstem serotonin- and substance P-containing neurons in Parkinson's disease. Brain Res. 510, 104–107 10.1016/0006-8993(90)90733-R [DOI] [PubMed] [Google Scholar]
  63. Hashimoto K., Kita H. (2008). Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. J. Neurophysiol. 99, 1723–1732 10.1152/jn.01143.2007 [DOI] [PubMed] [Google Scholar]
  64. Horisawa T., Ishiyama T., Ono M., Ishibashi T., Taiji M. (2013). Binding of lurasidone, a novel antipsychotic, to rat 5-HT7 receptor: analysis by [3H]SB-269970 autoradiography. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 132–137 10.1016/j.pnpbp.2012.08.005 [DOI] [PubMed] [Google Scholar]
  65. Hoyer D., Pazos A., Probst A., Palacios J. M. (1986). Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res. 376, 97–107 10.1016/0006-8993(86)90903-0 [DOI] [PubMed] [Google Scholar]
  66. Huot P., Johnston T. H., Koprich J. B., Winkelmolen L., Fox S. H., Brotchie J. M. (2012a). Regulation of cortical and striatal 5-HT1A receptors in the MPTP-lesioned macaque. Neurobiol. Aging 33, 207.e9–e19 10.1016/j.neurobiolaging.2010.09.011 [DOI] [PubMed] [Google Scholar]
  67. Huot P., Johnston T. H., Visanji N. P., Darr T., Pires D., Hazrati L. N., et al. (2012b). Increased levels of 5-HT1A receptor binding in ventral visual pathways in Parkinson's disease. Mov. Disord. 27, 735–742 10.1002/mds.24964 [DOI] [PubMed] [Google Scholar]
  68. Huot P., Johnston T. H., Winkelmolen L., Fox S. H., Brotchie J. M. (2012c). 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiol. Aging 33, 194.e5–e15 10.1016/j.neurobiolaging.2010.04.035 [DOI] [PubMed] [Google Scholar]
  69. Iderberg H., Francardo V., Pioli E. Y. (2012). Animal models of L-DOPA-induced dyskinesia: an update on the current options. Neuroscience 211, 13–27 10.1016/j.neuroscience.2012.03.023 [DOI] [PubMed] [Google Scholar]
  70. Inden M., Abe M., Minamino H., Takata K., Yoshimoto K., Tooyama I., et al. (2012). Effect of selective serotonin reuptake inhibitors via 5-HT1A receptors on L-DOPA-induced rotational behavior in a hemiparkinsonian rat model. J. Pharmacol. Sci. 119, 10–19 10.1254/jphs.12003FP [DOI] [PubMed] [Google Scholar]
  71. Jakeman L. B., To Z. P., Eglen R. M., Wong E. H., Bonhaus D. W. (1994). Quantitative autoradiography of 5-HT4 receptors in brains of three species using two structurally distinct radioligands, [3H]GR113808 and [3H]BIMU-1. Neuropharmacology 33, 1027–1038 10.1016/0028-3908(94)90162-7 [DOI] [PubMed] [Google Scholar]
  72. Jellinger K. (1990). New developments in the pathology of Parkinson's disease. Adv. Neurol. 53, 1–16 [PubMed] [Google Scholar]
  73. Karstaedt P. J., Kerasidis H., Pincus J. H., Meloni R., Graham J., Gale K. (1994). Unilateral destruction of dopamine pathways increases ipsilateral striatal serotonin turnover in rats. Exp. Neurol. 126, 25–30 10.1006/exnr.1994.1039 [DOI] [PubMed] [Google Scholar]
  74. Kaya A. H., Vlamings R., Tan S., Lim L. W., Magill P. J., Steinbusch H. W., et al. (2008). Increased electrical and metabolic activity in the dorsal raphe nucleus of Parkinsonian rats. Brain Res. 1221, 93–97 10.1016/j.brainres.2008.05.019 [DOI] [PubMed] [Google Scholar]
  75. Kelland M. D., Freeman A. S., Chiodo L. A. (1990). Serotonergic afferent regulation of the basic physiology and pharmacological responsiveness of nigrostriatal dopamine neurons. J. Pharmacol. Exp. Ther. 253, 803–811 [PubMed] [Google Scholar]
  76. Kerenyi L., Ricaurte G. A., Schretlen D. J., McCann U., Varga J., Mathews W. B., et al. (2003). Positron emission tomography of striatal serotonin transporters in Parkinson disease. Arch. Neurol. 60, 1223–1229 10.1001/archneur.60.9.1223 [DOI] [PubMed] [Google Scholar]
  77. Kilpatrick G. J., Jones B. J., Tyers M. B. (1987). Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330, 746–748 10.1038/330746a0 [DOI] [PubMed] [Google Scholar]
  78. Kish S. J., Tong J., Hornykiewicz O., Rajput A., Chang L. J., Guttman M., et al. (2008). Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease. Brain 131, 120–131 10.1093/brain/awm239 [DOI] [PubMed] [Google Scholar]
  79. Kita H., Chiken S., Tachibana Y., Nambu A. (2007). Serotonin modulates pallidal neuronal activity in the awake monkey. J. Neurosci. 27, 75–83 10.1523/JNEUROSCI.4058-06.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Kleedorfer B., Lees A. J., Stern G. M. (1991). Buspirone in the treatment of levodopa induced dyskinesias. J. Neurol. Neurosurg. Psychiatry 54, 376–377 10.1136/jnnp.54.4.376-a [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Knobelman D. A., Kung H. F., Lucki I. (2000). Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT(1A) and 5-HT(1B) receptors. J. Pharmacol. Exp. Ther. 292, 1111–1117 [PubMed] [Google Scholar]
  82. Kohen R., Metcalf M. A., Khan N., Druck T., Huebner K., Lachowicz J. E., et al. (1996). Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J. Neurochem. 66, 47–56 10.1046/j.1471-4159.1996.66010047.x [DOI] [PubMed] [Google Scholar]
  83. Lagiere M., Navailles S., Mignon L., Roumegous A., Chesselet M. F., Deurwaerdere P. D. (2013). The enhanced oral response to the 5-HT2 agonist Ro 60-0175 in parkinsonian rats involves the entopeduncular nuclues: electrophysiological correlates. Exp. Brain Res. 230, 513–524 10.1007/s00221-013-3478-4 [DOI] [PubMed] [Google Scholar]
  84. Lanfumey L., Hamon M. (2000). Central 5-HT(1A) receptors: regional distribution and functional characteristics. Nucl. Med. Biol. 27, 429–435 10.1016/S0969-8051(00)00107-4 [DOI] [PubMed] [Google Scholar]
  85. Lavoie B., Parent A. (1990). Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J. Comp. Neurol. 299, 1–16 10.1002/cne.902990102 [DOI] [PubMed] [Google Scholar]
  86. Liu J., Chu Y. X., Zhang Q. J., Wang S., Feng J., Li Q. (2007). 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus alters neuronal activity of the subthalamic nucleus in normal and 6-hydroxydopamine-lesioned rats. Brain Res. 1149, 216–222 10.1016/j.brainres.2007.02.052 [DOI] [PubMed] [Google Scholar]
  87. Lopez-Gimenez J. F., Mengod G., Palacios J. M., Vilaro M. T. (2001). Regional distribution and cellular localization of 5-HT2C receptor mRNA in monkey brain: comparison with [3H]mesulergine binding sites and choline acetyltransferase mRNA. Synapse 42, 12–26 10.1002/syn.1095 [DOI] [PubMed] [Google Scholar]
  88. Lucas G., Di Matteo V., De Deurwaerdere P., Porras G., Martin-Ruiz R., Artigas F., et al. (2001). Neurochemical and electrophysiological evidence that 5-HT4 receptors exert a state-dependent facilitatory control in vivo on nigrostriatal, but not mesoaccumbal, dopaminergic function. Eur. J. Neurosci. 13, 889–898 10.1046/j.0953-816x.2000.01453.x [DOI] [PubMed] [Google Scholar]
  89. Maeda T., Kannari K., Shen H., Arai A., Tomiyama M., Matsunaga M., et al. (2003). Rapid induction of serotonergic hyperinnervation in the adult rat striatum with extensive dopaminergic denervation. Neurosci. Lett. 343, 17–20 10.1016/S0304-3940(03)00295-7 [DOI] [PubMed] [Google Scholar]
  90. Martin-Cora F. J., Pazos A. (2004). Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br. J. Pharmacol. 141, 92–104 10.1038/sj.bjp.0705576 [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Mengod G., Pompeiano M., Martinez-Mir M. I., Palacios J. M. (1990). Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res. 524, 139–143 10.1016/0006-8993(90)90502-3 [DOI] [PubMed] [Google Scholar]
  92. Mignon L. J., Wolf W. A. (2005). 8-hydroxy-2-(di-n-propylamino)tetralin reduces striatal glutamate in an animal model of Parkinson's disease. Neuroreport 16, 699–703 10.1097/00001756-200505120-00009 [DOI] [PubMed] [Google Scholar]
  93. Miguelez C., Berrocoso E., Mico J. A., Ugedo L. (2013). l-DOPA modifies the antidepressant-like effects of reboxetine and fluoxetine in rats. Neuropharmacology 67, 349–358 10.1016/j.neuropharm.2012.11.016 [DOI] [PubMed] [Google Scholar]
  94. Miguelez C., Grandoso L., Ugedo L. (2011). Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson's disease. Int. J. Neuropsychopharmacol. 14, 187–200 10.1017/S146114571000043X [DOI] [PubMed] [Google Scholar]
  95. Minabe Y., Emori K., Ashby C. R., Jr. (1996). The depletion of brain serotonin levels by para-chlorophenylalanine administration significantly alters the activity of midbrain dopamine cells in rats: an extracellular single cell recording study. Synapse 22, 46–53 10.1002/(SICI)1098-2396(199601)22:1%3C46::AID-SYN5%3E3.3.CO;2-I [DOI] [PubMed] [Google Scholar]
  96. Mo J., Zhang H., Yu L. P., Sun P. H., Jin G. Z., Zhen X. (2010). L-stepholidine reduced L-DOPA-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson's disease. Neurobiol. Aging 31, 926–936 10.1016/j.neurobiolaging.2008.06.017 [DOI] [PubMed] [Google Scholar]
  97. Nahimi A., Holtzermann M., Landau A. M., Simonsen M., Jakobsen S., Alstrup A. K., et al. (2012). Serotonergic modulation of receptor occupancy in rats treated with L-DOPA after unilateral 6-OHDA lesioning. J. Neurochem. 120, 806–817 10.1111/j.1471-4159.2011.07598.x [DOI] [PubMed] [Google Scholar]
  98. Navailles S., Benazzouz A., Bioulac B., Gross C., De Deurwaerdere P. (2010a). High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson's disease. J. Neurosci. 30, 2356–2364 10.1523/JNEUROSCI.5031-09.2010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Navailles S., Bioulac B., Gross C., De Deurwaerdere P. (2010b). Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson's disease. Neurobiol. Dis. 38, 136–143 10.1016/j.nbd.2010.01.012 [DOI] [PubMed] [Google Scholar]
  100. Navailles S., Lagiere M., Contini A., De Deurwaerdere P. (2013). Multisite intracerebral microdialysis to study the mechanism of L-DOPA induced dopamine and serotonin release in the parkinsonian brain. ACS Chem. Neurosci. 4, 680–692 10.1021/cn400046e [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Nevalainen N., Af Bjerken S., Lundblad M., Gerhardt G. A., Stromberg I. (2011). Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia. J. Neurochem. 118, 12–23 10.1111/j.1471-4159.2011.07292.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Nirogi R., Kandikere V., Bhyrapuneni G., Saralaya R., Ajjala D. R., Aleti R. R., et al. (2013). In-vivo rat striatal 5-HT4 receptor occupancy using non-radiolabelled SB207145. J. Pharm. Pharmacol. 65, 704–712 10.1111/jphp.12030 [DOI] [PubMed] [Google Scholar]
  103. Oliver K. R., Kinsey A. M., Wainwright A., Sirinathsinghji D. J. (2000). Localization of 5-ht(5A) receptor-like immunoreactivity in the rat brain. Brain Res. 867, 131–142 10.1016/S0006-8993(00)02273-3 [DOI] [PubMed] [Google Scholar]
  104. Olpe H. R., Koella W. P. (1977). The response of striatal cells upon stimulation of the dorsal and median raphe nuclei. Brain Res. 122, 357–360 10.1016/0006-8993(77)90302-X [DOI] [PubMed] [Google Scholar]
  105. Palkovits M., Brownstein M., Saavedra J. M. (1974). Serotonin content of the brain stem nuclei in the rat. Brain Res. 80, 237–249 10.1016/0006-8993(74)90688-X [DOI] [PubMed] [Google Scholar]
  106. Park M. R., Gonzales-Vegas J. A., Kitai S. T. (1982). Serotonergic excitation from dorsal raphe stimulation recorded intracellularly from rat caudate-putamen. Brain Res. 243, 49–58 10.1016/0006-8993(82)91119-2 [DOI] [PubMed] [Google Scholar]
  107. Pazos A., Cortes R., Palacios J. M. (1985). Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 346, 231–249 10.1016/0006-8993(85)90857-1 [DOI] [PubMed] [Google Scholar]
  108. Pazos A., Probst A., Palacios J. M. (1987). Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21, 123–139 10.1016/0306-4522(87)90327-7 [DOI] [PubMed] [Google Scholar]
  109. Politis M., Wu K., Loane C., Kiferle L., Molloy S., Brooks D. J., et al. (2010). Staging of serotonergic dysfunction in Parkinson's disease: an in vivo 11C-DASB PET study. Neurobiol. Dis. 40, 216–221 10.1016/j.nbd.2010.05.028 [DOI] [PubMed] [Google Scholar]
  110. Pompeiano M., Palacios J. M., Mengod G. (1994). Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res. Mol. Brain Res. 23, 163–178 10.1016/0169-328X(94)90223-2 [DOI] [PubMed] [Google Scholar]
  111. Prinz A., Selesnew L. M., Liss B., Roeper J., Carlsson T. (2013). Increased excitability in serotonin neurons in the dorsal raphe nucleus in the 6-OHDA mouse model of Parkinson's disease. Exp. Neurol. 248C, 236–245 10.1016/j.expneurol.2013.06.015 [DOI] [PubMed] [Google Scholar]
  112. Prisco S., Esposito E. (1995). Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br. J. Pharmacol. 116, 1923–1931 10.1111/j.1476-5381.1995.tb16684.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Querejeta E., Oviedo-Chavez A., Araujo-Alvarez J. M., Quinones-Cardenas A. R., Delgado A. (2005). In vivo effects of local activation and blockade of 5-HT1B receptors on globus pallidus neuronal spiking. Brain Res. 1043, 186–194 10.1016/j.brainres.2005.02.055 [DOI] [PubMed] [Google Scholar]
  114. Radja F., Descarries L., Dewar K. M., Reader T. A. (1993). Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res. 606, 273–285 10.1016/0006-8993(93)90995-Y [DOI] [PubMed] [Google Scholar]
  115. Raisman R., Cash R., Agid Y. (1986). Parkinson's disease: decreased density of 3H-imipramine and 3H-paroxetine binding sites in putamen. Neurology 36, 556–560 10.1212/WNL.36.4.556 [DOI] [PubMed] [Google Scholar]
  116. Reijnders J. S., Ehrt U., Weber W. E., Aarsland D., Leentjens A. F. (2008). A systematic review of prevalence studies of depression in Parkinson's disease. Mov. Disord. 23, 183–189 10.1002/mds.21803 [DOI] [PubMed] [Google Scholar]
  117. Reynolds G. P., Mason S. L., Meldrum A., De Keczer S., Parnes H., Eglen R. M., et al. (1995). 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. 114, 993–998 10.1111/j.1476-5381.1995.tb13303.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Riahi G., Morissette M., Levesque D., Rouillard C., Samadi P., Parent M., et al. (2012). Effect of chronic l-DOPA treatment on 5-HT(1A) receptors in parkinsonian monkey brain. Neurochem. Int. 61, 1160–1171 10.1016/j.neuint.2012.08.009 [DOI] [PubMed] [Google Scholar]
  119. Riahi G., Morissette M., Parent M., Di Paolo T. (2011). Brain 5-HT(2A) receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur. J. Neurosci. 33, 1823–1831 10.1111/j.1460-9568.2011.07675.x [DOI] [PubMed] [Google Scholar]
  120. Riahi G., Morissette M., Samadi P., Parent M., Di Paolo T. (2013). Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Biochem. Pharmacol. 86, 970–978 10.1016/j.bcp.2013.08.005 [DOI] [PubMed] [Google Scholar]
  121. Rick C. E., Stanford I. M., Lacey M. G. (1995). Excitation of rat substantia nigra pars reticulata neurons by 5-hydroxytryptamine in vitro: evidence for a direct action mediated by 5-hydroxytryptamine2C receptors. Neuroscience 69, 903–913 10.1016/0306-4522(95)00283-O [DOI] [PubMed] [Google Scholar]
  122. Rozas G., Liste I., Guerra M. J., Labandeira-Garcia J. L. (1998). Sprouting of the serotonergic afferents into striatum after selective lesion of the dopaminergic system by MPTP in adult mice. Neurosci. Lett. 245, 151–154 10.1016/S0304-3940(98)00198-0 [DOI] [PubMed] [Google Scholar]
  123. Rueter L. E., Tecott L. H., Blier P. (2000). In vivo electrophysiological examination of 5-HT2 responses in 5-HT2C receptor mutant mice. Naunyn Schmiedebergs Arch. Pharmacol. 361, 484–491 10.1007/s002109900181 [DOI] [PubMed] [Google Scholar]
  124. Rylander D., Parent M., O'Sullivan S. S., Dovero S., Lees A. J., Bezard E., et al. (2010). Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann. Neurol. 68, 619–628 10.1002/ana.22097 [DOI] [PubMed] [Google Scholar]
  125. Saavedra J. M. (1977). Distribution of serotonin and synthesizing enzymes in discrete areas of the brain. Fed. Proc. 36, 2134–2141 [PubMed] [Google Scholar]
  126. Scatton B., Javoy-Agid F., Rouquier L., Dubois B., Agid Y. (1983). Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res. 275, 321–328 10.1016/0006-8993(83)90993-9 [DOI] [PubMed] [Google Scholar]
  127. Shen K. Z., Johnson S. W. (2008). 5-HT inhibits synaptic transmission in rat subthalamic nucleus neurons in vitro. Neuroscience 151, 1029–1033 10.1016/j.neuroscience.2007.12.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Shen K. Z., Kozell L. B., Johnson S. W. (2007). Multiple conductances are modulated by 5-HT receptor subtypes in rat subthalamic nucleus neurons. Neuroscience 148, 996–1003 10.1016/j.neuroscience.2007.07.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Sinton C. M., Fallon S. L. (1988). Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur. J. Pharmacol. 157, 173–181 10.1016/0014-2999(88)90380-9 [DOI] [PubMed] [Google Scholar]
  130. Stanford I. M., Kantaria M. A., Chahal H. S., Loucif K. C., Wilson C. L. (2005). 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 49, 1228–1234 10.1016/j.neuropharm.2005.09.003 [DOI] [PubMed] [Google Scholar]
  131. Stanford I. M., Lacey M. G. (1996). Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J. Neurosci. 16, 7566–7573 [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Stefani A., Surmeier D. J., Kitai S. T. (1990). Serotonin enhances excitability in neostriatal neurons by reducing voltage-dependent potassium currents. Brain Res. 529, 354–357 10.1016/0006-8993(90)90851-2 [DOI] [PubMed] [Google Scholar]
  133. Steward L. J., Bufton K. E., Hopkins P. C., Davies W. E., Barnes N. M. (1993). Reduced levels of 5-HT3 receptor recognition sites in the putamen of patients with Huntington's disease. Eur. J. Pharmacol. 242, 137–143 10.1016/0014-2999(93)90073-Q [DOI] [PubMed] [Google Scholar]
  134. Takeuchi Y., Sawada T., Blunt S., Jenner P., Marsden C. D. (1991). Effects of 6-hydroxydopamine lesions of the nigrostriatal pathway on striatal serotonin innervation in adult rats. Brain Res. 562, 301–305 10.1016/0006-8993(91)90635-9 [DOI] [PubMed] [Google Scholar]
  135. Tronci E., Lisci C., Stancampiano R., Fidalgo C., Collu M., Devoto P., et al. (2013). 5-Hydroxy-tryptophan for the treatment of L-DOPA-induced dyskinesia in the rat Parkinson's disease model. Neurobiol. Dis. 60, 108–114 10.1016/j.nbd.2013.08.014 [DOI] [PubMed] [Google Scholar]
  136. Ugedo L., Grenhoff J., Svensson T. H. (1989). Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology (Berl) 98, 45–50 10.1007/BF00442004 [DOI] [PubMed] [Google Scholar]
  137. Vandermaelen C. P., Bonduki A. C., Kitai S. T. (1979). Excitation of caudate-putamen neurons following stimulation of the dorsal raphe nucleus in the rat. Brain Res. 175, 356–361 10.1016/0006-8993(79)91016-3 [DOI] [PubMed] [Google Scholar]
  138. Vanover K. E., Betz A. J., Weber S. M., Bibbiani F., Kielaite A., Weiner D. M., et al. (2008). A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacol. Biochem. Behav. 90, 540–544 10.1016/j.pbb.2008.04.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Varnas K., Halldin C., Hall H. (2004a). Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum. Brain Mapp. 22, 246–260 10.1002/hbm.20035 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Varnas K., Thomas D. R., Tupala E., Tiihonen J., Hall H. (2004b). Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using [3H]SB-269970. Neurosci. Lett. 367, 313–316 10.1016/j.neulet.2004.06.025 [DOI] [PubMed] [Google Scholar]
  141. Varnas K., Halldin C., Pike V. W., Hall H. (2003). Distribution of 5-HT4 receptors in the postmortem human brain–an autoradiographic study using [125I]SB 207710. Eur. Neuropsychopharmacol. 13, 228–234 10.1016/S0924-977X(03)00009-9 [DOI] [PubMed] [Google Scholar]
  142. Wang H., Chen X. Y., Chen W. F., Xue Y., Wei L., Chen L. (2013). Anticataleptic effects of 5-HT1B receptors in the globus pallidus. Neurosci. Res. 77, 162–169 10.1016/j.neures.2013.09.002 [DOI] [PubMed] [Google Scholar]
  143. Wang S., Zhang Q. J., Liu J., Wu Z. H., Wang T., Gui Z. H., et al. (2009). Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal firing of the midbrain raphe nuclei 5-HT neurons and a decrease of their response to 5-HT(1A) receptor stimulation in the rat. Neuroscience 159, 850–861 10.1016/j.neuroscience.2008.12.051 [DOI] [PubMed] [Google Scholar]
  144. Wilms K., Vierig G., Davidowa H. (2001). Interactive effects of cholecystokinin-8S and various serotonin receptor agonists on the firing activity of neostriatal neuronesin rats. Neuropeptides 35, 257–270 10.1054/npep.2001.0875 [DOI] [PubMed] [Google Scholar]
  145. Wong E. H., Reynolds G. P., Bonhaus D. W., Hsu S., Eglen R. M. (1996). Characterization of [3H]GR 113808 binding to 5-HT4 receptors in brain tissues from patients with neurodegenerative disorders. Behav. Brain Res. 73, 249–252 10.1016/0166-4328(96)00106-4 [DOI] [PubMed] [Google Scholar]
  146. Xiang Z., Wang L., Kitai S. T. (2005). Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J. Neurophysiol. 93, 1145–1157 10.1152/jn.00561.2004 [DOI] [PubMed] [Google Scholar]
  147. Yakel J. L., Trussell L. O., Jackson M. B. (1988). Three serotonin responses in cultured mouse hippocampal and striatal neurons. J. Neurosci. 8, 1273–1285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Yamada H., Aimi Y., Nagatsu I., Taki K., Kudo M., Arai R. (2007). Immunohistochemical detection of L-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci. Res. 59, 1–7 10.1016/j.neures.2007.05.002 [DOI] [PubMed] [Google Scholar]
  149. Zhang Q. J., Gao R., Liu Y. P., Wang S. (2007a). Changes in the firing activity of serotonergic neurons in the dorsal raphe nucleus in a rat model of Parkinson's disease. Sheng Li Xue Bao 59, 183–189 [PubMed] [Google Scholar]
  150. Zhang X., Andren P. E., Svenningsson P. (2007b). Changes on 5-HT(2) receptor mRNAs in striatum and subthalamic nucleus in Parkinson's disease model. Physiol. Behav. 92, 29–33 10.1016/j.physbeh.2007.05.033 [DOI] [PubMed] [Google Scholar]
  151. Zhang S. J., Wang H., Xue Y., Yung W. H., Chen L. (2010). Behavioral and electrophysiological effects of 5-HT in globus pallidus of 6-hydroxydopamine lesioned rats. J. Neurosci. Res. 88, 1549–1556 10.1002/jnr.22325 [DOI] [PubMed] [Google Scholar]
  152. Zhang X., Andren P. E., Greengard P., Svenningsson P. (2008). Evidence for a role of the 5-HT1B receptor and its adaptor protein, p11, in L-DOPA treatment of an animal model of Parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 105, 2163–2168 10.1073/pnas.0711839105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Zhou F. C., Bledsoe S., Murphy J. (1991). Serotonergic sprouting is induced by dopamine-lesion in substantia nigra of adult rat brain. Brain Res. 556, 108–116 10.1016/0006-8993(91)90553-8 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Neural Circuits are provided here courtesy of Frontiers Media SA

RESOURCES