Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1998 Jun;51(3):143–148. doi: 10.1136/mp.51.3.143

Chemotaxins C5a and fMLP induce release of calprotectin (leucocyte L1 protein) from polymorphonuclear cells in vitro.

G Hetland 1, G J Talgö 1, M K Fagerhol 1
PMCID: PMC395626  PMID: 9850337

Abstract

AIMS: To determine whether the chemotaxins C5a and formyl peptide (fMLP) can stimulate the release of calprotectin, the major leucocyte protein of polymorphonuclear neutrophils (PMN). METHODS: A dose response curve for the uptake of 125I labelled rC5a and fMLP in PMN was determined by radioimmunoassay. The unlabelled chemotaxins were then incubated with PMN and the concentration of calprotectin in PMN lysates and supernatants was measured by an enzyme immunoassay. RESULTS: Both rC5a and fMLP induced release of calprotectin from PMN in a dose dependent manner as determined by a reduction in intracellular calprotectin concentration. A minimum of approximately 10% of total PMN calprotectin was retained at concentrations of 10-100 nM of rC5a and 0.1-10.0 nM of fMLP. Antibodies to C5a reduced the rC5a mediated release of calprotectin, and the fMLP antagonist N-t-Boc-MLP inhibited the fMLP induced calprotectin release. Because receptors for rC5a (CD88) and fMLP are G protein coupled and thought to be pertussis toxin sensitive, PMN were incubated with this toxin before the experiments. The toxin was found to reduce uptake of rC5a by the cells and to inhibit rC5a and fMLP mediated calprotectin release. CONCLUSIONS: rC5a and fMLP mediate release of calprotectin from PMN in vitro. This effect might be important during human infections in vivo.

Full Text

The Full Text of this article is available as a PDF (189.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker E. L., Showell H. J., Henson P. M., Hsu L. S. The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces and the relation of enzyme release to chemotactic responsiveness. J Immunol. 1974 Jun;112(6):2047–2054. [PubMed] [Google Scholar]
  2. Bergh K., Iversen O. J. Production of monoclonal antibodies against the human anaphylatoxin C5a des Arg and their application in the neoepitope-specific sandwich-ELISA for the quantification of C5a des Arg in plasma. J Immunol Methods. 1992 Jul 31;152(1):79–87. doi: 10.1016/0022-1759(92)90091-7. [DOI] [PubMed] [Google Scholar]
  3. Berntzen H. B., Fagerhol M. K., Ostensen M., Mowinckel P., Høyeraal H. M. The L1 protein as a new indicator of inflammatory activity in patients with juvenile rheumatoid arthritis. J Rheumatol. 1991 Jan;18(1):133–138. [PubMed] [Google Scholar]
  4. Berntzen H. B., Munthe E., Fagerhol M. K. A longitudinal study of the leukocyte protein L1 as an indicator of disease activity in patients with rheumatoid arthritis. J Rheumatol. 1989 Nov;16(11):1416–1420. [PubMed] [Google Scholar]
  5. Brandtzaeg P., Jones D. B., Flavell D. J., Fagerhol M. K. Mac 387 antibody and detection of formalin resistant myelomonocytic L1 antigen. J Clin Pathol. 1988 Sep;41(9):963–970. doi: 10.1136/jcp.41.9.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burwinkel F., Roth J., Goebeler M., Bitter U., Wrocklage V., Vollmer E., Roessner A., Sorg C., Böcker W. Ultrastructural localization of the S-100-like proteins MRP8 and MRP14 in monocytes is calcium-dependent. Histochemistry. 1994 Feb;101(2):113–120. doi: 10.1007/BF00269357. [DOI] [PubMed] [Google Scholar]
  7. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  8. Chenoweth D. E., Goodman M. G. The C5a receptor of neutrophils and macrophages. Agents Actions Suppl. 1983;12:252–273. doi: 10.1007/978-3-0348-9352-7_15. [DOI] [PubMed] [Google Scholar]
  9. Chenoweth D. E., Hugli T. E. Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3943–3947. doi: 10.1073/pnas.75.8.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dahinden C., Galanos C., Fehr J. Granulocyte activation by endotoxin. I. Correlation between adherence and other granulocyte functions, and role of endotoxin structure on biologic activity. J Immunol. 1983 Feb;130(2):857–862. [PubMed] [Google Scholar]
  11. Dale I., Brandtzaeg P., Fagerhol M. K., Scott H. Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes. Immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Am J Clin Pathol. 1985 Jul;84(1):24–34. doi: 10.1093/ajcp/84.1.24. [DOI] [PubMed] [Google Scholar]
  12. Dale I., Fagerhol M. K., Naesgaard I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem. 1983 Jul 15;134(1):1–6. doi: 10.1111/j.1432-1033.1983.tb07522.x. [DOI] [PubMed] [Google Scholar]
  13. Damerau B., Grünefeld E., Vogt W. Aggregation of leukocytes induced by the complement-derived peptides C3a and C5a and by three synthetic formyl-methionyl peptides. Int Arch Allergy Appl Immunol. 1980;63(2):159–169. doi: 10.1159/000232622. [DOI] [PubMed] [Google Scholar]
  14. Day A. R., Pinon D., Muthukumaraswamy N., Freer R. J. Synthesis of several chemotactic peptide antagonists. Peptides. 1980 Winter;1(4):289–291. doi: 10.1016/0196-9781(80)90005-4. [DOI] [PubMed] [Google Scholar]
  15. Duff G. W., Atkins E. The inhibitory effect of polymyxin B on endotoxin-induced endogenous pyrogen production. J Immunol Methods. 1982 Aug 13;52(3):333–340. doi: 10.1016/0022-1759(82)90005-9. [DOI] [PubMed] [Google Scholar]
  16. Ember J. A., Sanderson S. D., Hugli T. E., Morgan E. L. Induction of interleukin-8 synthesis from monocytes by human C5a anaphylatoxin. Am J Pathol. 1994 Feb;144(2):393–403. [PMC free article] [PubMed] [Google Scholar]
  17. Feltner D. E., Smith R. H., Marasco W. A. Characterization of the plasma membrane bound GTPase from rabbit neutrophils. I. Evidence for an Ni-like protein coupled to the formyl peptide, C5a, and leukotriene B4 chemotaxis receptors. J Immunol. 1986 Sep 15;137(6):1961–1970. [PubMed] [Google Scholar]
  18. Gerard N. P., Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991 Feb 14;349(6310):614–617. doi: 10.1038/349614a0. [DOI] [PubMed] [Google Scholar]
  19. Haviland D. L., McCoy R. L., Whitehead W. T., Akama H., Molmenti E. P., Brown A., Haviland J. C., Parks W. C., Perlmutter D. H., Wetsel R. A. Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung. J Immunol. 1995 Feb 15;154(4):1861–1869. [PubMed] [Google Scholar]
  20. Hetland G., Berntzen H. B., Fagerhol M. K. Levels of calprotectin (leukocyte L1 protein) during apheresis. Scand J Clin Lab Invest. 1992 Oct;52(6):479–482. doi: 10.3109/00365519209090124. [DOI] [PubMed] [Google Scholar]
  21. Hetland G., Moen O., Bergh K., Högäsen K., Hack C. E., Mollnes T. E., Fosse E. Both plasma- and leukocyte-associated C5a are essential for assessment of C5a generation in vivo. Ann Thorac Surg. 1997 Apr;63(4):1076–1080. doi: 10.1016/s0003-4975(96)01255-6. [DOI] [PubMed] [Google Scholar]
  22. Hetland G., Mollnes T. E., Garred P. Activation of complement during apheresis. Clin Exp Immunol. 1991 Jun;84(3):535–538. [PMC free article] [PubMed] [Google Scholar]
  23. Hetland G., del Zoppo G. J., Mori E., Thomas W. S., Hugli T. E. Uptake of C5a by polymorphonuclear leukocytes (PMNs) after focal cerebral ischemia. I. Effect of tirilazad mesylate intervention on C5a uptake by PMNs. Immunopharmacology. 1994 May-Jun;27(3):191–198. doi: 10.1016/0162-3109(94)90015-9. [DOI] [PubMed] [Google Scholar]
  24. LEVIN J., BANG F. B. THE ROLE OF ENDOTOXIN IN THE EXTRACELLULAR COAGULATION OF LIMULUS BLOOD. Bull Johns Hopkins Hosp. 1964 Sep;115:265–274. [PubMed] [Google Scholar]
  25. McPhail L. C., Snyderman R. Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms. J Clin Invest. 1983 Jul;72(1):192–200. doi: 10.1172/JCI110957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miyasaki K. T., Bodeau A. L., Murthy A. R., Lehrer R. I. In vitro antimicrobial activity of the human neutrophil cytosolic S-100 protein complex, calprotectin, against Capnocytophaga sputigena. J Dent Res. 1993 Feb;72(2):517–523. doi: 10.1177/00220345930720020801. [DOI] [PubMed] [Google Scholar]
  27. Mollnes T. E., Garred P., Bergseth G. Effect of time, temperature and anticoagulants on in vitro complement activation: consequences for collection and preservation of samples to be examined for complement activation. Clin Exp Immunol. 1988 Sep;73(3):484–488. [PMC free article] [PubMed] [Google Scholar]
  28. Niedel J., Wilkinson S., Cuatrecasas P. Receptor-mediated uptake and degradation of 125I-chemotactic peptide by human neutrophils. J Biol Chem. 1979 Nov 10;254(21):10700–10706. [PubMed] [Google Scholar]
  29. Prossnitz E. R., Quehenberger O., Cochrane C. G., Ye R. D. Signal transducing properties of the N-formyl peptide receptor expressed in undifferentiated HL60 cells. J Immunol. 1993 Nov 15;151(10):5704–5715. [PubMed] [Google Scholar]
  30. Røseth A. G., Fagerhol M. K., Aadland E., Schjønsby H. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand J Gastroenterol. 1992 Sep;27(9):793–798. doi: 10.3109/00365529209011186. [DOI] [PubMed] [Google Scholar]
  31. Sander J., Fagerhol M. K., Bakken J. S., Dale I. Plasma levels of the leucocyte L1 protein in febrile conditions: relation to aetiology, number of leucocytes in blood, blood sedimentation reaction and C-reactive protein. Scand J Clin Lab Invest. 1984 Jun;44(4):357–362. doi: 10.3109/00365518409083820. [DOI] [PubMed] [Google Scholar]
  32. Santhanagopalan V., Hahn B. L., Dunn B. E., Weissner J. H., Sohnle P. G. Antimicrobial activity of calprotectin isolated from human empyema fluid supernatants. Clin Immunol Immunopathol. 1995 Sep;76(3 Pt 1):285–290. doi: 10.1006/clin.1995.1127. [DOI] [PubMed] [Google Scholar]
  33. Sohnle P. G., Collins-Lech C., Wiessner J. H. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J Infect Dis. 1991 Jul;164(1):137–142. doi: 10.1093/infdis/164.1.137. [DOI] [PubMed] [Google Scholar]
  34. Sohnle P. G., Collins-Lech C., Wiessner J. H. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J Infect Dis. 1991 Jul;164(1):137–142. doi: 10.1093/infdis/164.1.137. [DOI] [PubMed] [Google Scholar]
  35. Sozzani S., Sallusto F., Luini W., Zhou D., Piemonti L., Allavena P., Van Damme J., Valitutti S., Lanzavecchia A., Mantovani A. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J Immunol. 1995 Oct 1;155(7):3292–3295. [PubMed] [Google Scholar]
  36. Steinbakk M., Naess-Andresen C. F., Lingaas E., Dale I., Brandtzaeg P., Fagerhol M. K. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990 Sep 29;336(8718):763–765. doi: 10.1016/0140-6736(90)93237-j. [DOI] [PubMed] [Google Scholar]
  37. Webster R. O., Zanolari B., Henson P. M. Neutrophil chemotaxis in response to surface-bound C5A. Exp Cell Res. 1980 Sep;129(1):55–62. doi: 10.1016/0014-4827(80)90330-4. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES