Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1998 Jun;51(3):164–167. doi: 10.1136/mp.51.3.164

Same day diagnosis of Down's syndrome and sex in single cells using multiplex fluorescent PCR.

I Findlay 1, P Matthews 1, T Tóth 1, P Quirke 1, Z Papp 1
PMCID: PMC395630  PMID: 9850341

Abstract

The major reason for prenatal diagnosis lies in the detection of trisomies, particularly trisomy 21 (Down's syndrome). Current techniques require lengthy laboratory procedures and high costs. Furthermore, diagnosis is often not possible if the sample is of small size or is contaminated. An alternative method, quantitative fluorescent polymerase chain reaction (PCR) of short tandem repeats (STRs), can also be used to diagnose trisomies and it has the advantage that a result is obtained within five to eight hours. However, this method is currently limited to relatively large amounts of sample, which restricts diagnostic confidence and value. Recently, genetic diagnosis using fluorescent PCR has been applied at the single cell level but is limited to sex or single gene defect diagnosis. This study, using quantitative multiplex fluorescent PCR, provides for the first time simultaneous diagnosis and confirmation of sex and trisomy in single cells. Two markers for chromosome 21 increase diagnostic confidence, informativeness, and confirmation. This system is rapid (five hours), reliable, and accurate and we believe that it will be more cost effective than alternative methods. The technique has direct application to preimplantation genetic diagnosis, early prenatal diagnosis, and other diagnostic systems where sample size is limited.

Full Text

The Full Text of this article is available as a PDF (146.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adinolfi M., Sherlock J., Tutschek B., Halder A., Delhanty J., Rodeck C. Detection of fetal cells in transcervical samples and prenatal diagnosis of chromosomal abnormalities. Prenat Diagn. 1995 Oct;15(10):943–949. doi: 10.1002/pd.1970151009. [DOI] [PubMed] [Google Scholar]
  2. De Andreis C., Simoni G., Rossella F., Castagna C., Pesenti E., Porta G., Colucci G., Giuntelli S., Pardi G., Semprini A. E. HIV-1 proviral DNA polymerase chain reaction detection in chorionic villi after exclusion of maternal contamination by variable number of tandem repeats analysis. AIDS. 1996 Jun;10(7):711–715. doi: 10.1097/00002030-199606001-00004. [DOI] [PubMed] [Google Scholar]
  3. Findlay I., Quirke P. Fluorescent polymerase chain reaction: Part I. A new method allowing genetic diagnosis and DNA fingerprinting of single cells. Hum Reprod Update. 1996 Mar-Apr;2(2):137–152. doi: 10.1093/humupd/2.2.137. [DOI] [PubMed] [Google Scholar]
  4. Findlay I., Ray P., Quirke P., Rutherford A., Lilford R. Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis. Hum Reprod. 1995 Jun;10(6):1609–1618. doi: 10.1093/humrep/10.6.1609. [DOI] [PubMed] [Google Scholar]
  5. Findlay I., Urquhart A., Quirke P., Sullivan K., Rutherford A. J., Lilford R. J. Simultaneous DNA 'fingerprinting', diagnosis of sex and single-gene defect status from single cells. Hum Reprod. 1995 Apr;10(4):1005–1013. [PubMed] [Google Scholar]
  6. Guo Z., Sharma V., Patterson D., Litt M. TG repeat polymorphism at the D21S167 locus. Nucleic Acids Res. 1990 Aug 25;18(16):4967–4967. doi: 10.1093/nar/18.16.4967-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kotzot D., Bundscherer G., Bernasconi F., Brecevic L., Lurie I. W., Basaran S., Baccicchetti C., Höller A., Castellan C., Braun-Quentin C. Isochromosome 18p results from maternal meiosis II nondisjunction. Eur J Hum Genet. 1996;4(3):168–174. doi: 10.1159/000472191. [DOI] [PubMed] [Google Scholar]
  8. Levinson G., Fields R. A., Harton G. L., Palmer F. T., Maddalena A., Fugger E. F., Schulman J. D. Reliable gender screening for human preimplantation embryos, using multiple DNA target-sequences. Hum Reprod. 1992 Oct;7(9):1304–1313. doi: 10.1093/oxfordjournals.humrep.a137846. [DOI] [PubMed] [Google Scholar]
  9. Mansfield E. S. Diagnosis of Down syndrome and other aneuploidies using quantitative polymerase chain reaction and small tandem repeat polymorphisms. Hum Mol Genet. 1993 Jan;2(1):43–50. doi: 10.1093/hmg/2.1.43. [DOI] [PubMed] [Google Scholar]
  10. Pertl B., Weitgasser U., Kopp S., Kroisel P. M., Sherlock J., Adinolfi M. Rapid detection of trisomies 21 and 18 and sexing by quantitative fluorescent multiplex PCR. Hum Genet. 1996 Jul;98(1):55–59. doi: 10.1007/s004390050159. [DOI] [PubMed] [Google Scholar]
  11. Reid R., Sepulveda W., Kyle P. M., Davies G. Amniotic fluid culture failure: clinical significance and association with aneuploidy. Obstet Gynecol. 1996 Apr;87(4):588–592. doi: 10.1016/0029-7844(95)00479-3. [DOI] [PubMed] [Google Scholar]
  12. Roberts E., Duckett D. P., Lang G. D. Maternal cell contamination in chorionic villus samples assessed by direct preparations and three different culture methods. Prenat Diagn. 1988 Nov;8(9):635–640. doi: 10.1002/pd.1970080902. [DOI] [PubMed] [Google Scholar]
  13. Sharma V., Litt M. Tetranucleotide repeat polymorphism at the D21S11 locus. Hum Mol Genet. 1992 Apr;1(1):67–67. doi: 10.1093/hmg/1.1.67-a. [DOI] [PubMed] [Google Scholar]
  14. Tóth T., Findlay I., Nagy B., Quirke P., Papp Z. Prenatal detection of trisomy 21 by fluorescent polymerase chain reaction: importance of primer selection and criticism of an earlier report. Hum Genet. 1997 Dec;101(3):383–383. [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES