Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1998 Aug;51(4):185–190. doi: 10.1136/mp.51.4.185

Genomic imprinting and cancer.

J A Joyce 1, P N Schofield 1
PMCID: PMC395634  PMID: 9893743

Abstract

Genomic imprinting is the phenomenon by which individual alleles of certain genes are expressed differentially according to their parent of origin. The alleles appear to be differentially marked during gametogenesis or during the early part of development. This mark is heritable but reversible from generation to generation, implying a stable epigenetic modification. Approximately 25 imprinted genes have been identified to date, and dysregulation of a number of these has been implicated in tumour development. The normal physiological role of many imprinted genes is in the control of cell proliferation and fetal growth, indicating potential mechanisms of action in tumour formation. Both dominant and recessive modes of action have been postulated for the role of imprinted genes in neoplasia, as a result of effective gene dosage alterations by epigenetic modification of the normal pattern of allele specific transcription. The aim of this review is to assess the importance of imprinted genes in generating tumours and to discuss the implications for novel mechanisms of transforming mutation.

Full Text

The Full Text of this article is available as a PDF (168.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht S., von Schweinitz D., Waha A., Kraus J. A., von Deimling A., Pietsch T. Loss of maternal alleles on chromosome arm 11p in hepatoblastoma. Cancer Res. 1994 Oct 1;54(19):5041–5044. [PubMed] [Google Scholar]
  2. Ariel I., Ayesh S., Perlman E. J., Pizov G., Tanos V., Schneider T., Erdmann V. A., Podeh D., Komitowski D., Quasem A. S. The product of the imprinted H19 gene is an oncofetal RNA. Mol Pathol. 1997 Feb;50(1):34–44. doi: 10.1136/mp.50.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow D. P., Stöger R., Herrmann B. G., Saito K., Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991 Jan 3;349(6304):84–87. doi: 10.1038/349084a0. [DOI] [PubMed] [Google Scholar]
  4. Bartolomei M. S., Webber A. L., Brunkow M. E., Tilghman S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 1993 Sep;7(9):1663–1673. doi: 10.1101/gad.7.9.1663. [DOI] [PubMed] [Google Scholar]
  5. Bonilla F., Orlow I., Cordón-Cardó C. Mutational study of p16CDKN2/MTS1/INK4A and p57KIP2 genes in hepatocellular carcinoma. Int J Oncol. 1998 Mar;12(3):583–588. doi: 10.3892/ijo.12.3.583. [DOI] [PubMed] [Google Scholar]
  6. Brannan C. I., Dees E. C., Ingram R. S., Tilghman S. M. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990 Jan;10(1):28–36. doi: 10.1128/mcb.10.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casola S., Pedone P. V., Cavazzana A. O., Basso G., Luksch R., d'Amore E. S., Carli M., Bruni C. B., Riccio A. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene. 1997 Mar 27;14(12):1503–1510. doi: 10.1038/sj.onc.1200956. [DOI] [PubMed] [Google Scholar]
  8. Christofori G., Naik P., Hanahan D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature. 1994 Jun 2;369(6479):414–418. doi: 10.1038/369414a0. [DOI] [PubMed] [Google Scholar]
  9. Cooper M. J., Fischer M., Komitowski D., Shevelev A., Schulze E., Ariel I., Tykocinski M. L., Miron S., Ilan J., de Groot N. Developmentally imprinted genes as markers for bladder tumor progression. J Urol. 1996 Jun;155(6):2120–2127. [PubMed] [Google Scholar]
  10. Cost G. J., Thompson J. S., Reichard B. A., Lee J. Y., Feinberg A. P. Lack of imprinting of three human cyclin-dependent kinase inhibitor genes. Cancer Res. 1997 Mar 1;57(5):926–929. [PubMed] [Google Scholar]
  11. Davies S. M. Maintenance of genomic imprinting at the IGF2 locus in hepatoblastoma. Cancer Res. 1993 Oct 15;53(20):4781–4783. [PubMed] [Google Scholar]
  12. De Souza A. T., Hankins G. R., Washington M. K., Fine R. L., Orton T. C., Jirtle R. L. Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors. Oncogene. 1995 May 4;10(9):1725–1729. [PubMed] [Google Scholar]
  13. De Souza A. T., Hankins G. R., Washington M. K., Orton T. C., Jirtle R. L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet. 1995 Dec;11(4):447–449. doi: 10.1038/ng1295-447. [DOI] [PubMed] [Google Scholar]
  14. DeChiara T. M., Robertson E. J., Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. doi: 10.1016/0092-8674(91)90513-x. [DOI] [PubMed] [Google Scholar]
  15. Douc-Rasy S., Barrois M., Fogel S., Ahomadegbe J. C., Stéhelin D., Coll J., Riou G. High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene. 1996 Jan 18;12(2):423–430. [PubMed] [Google Scholar]
  16. Dowdy S. F., Fasching C. L., Araujo D., Lai K. M., Livanos E., Weissman B. E., Stanbridge E. J. Suppression of tumorigenicity in Wilms tumor by the p15.5-p14 region of chromosome 11. Science. 1991 Oct 11;254(5029):293–295. doi: 10.1126/science.254.5029.293. [DOI] [PubMed] [Google Scholar]
  17. Elliott M., Maher E. R. Beckwith-Wiedemann syndrome. J Med Genet. 1994 Jul;31(7):560–564. doi: 10.1136/jmg.31.7.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Giannoukakis N., Deal C., Paquette J., Goodyer C. G., Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993 May;4(1):98–101. doi: 10.1038/ng0593-98. [DOI] [PubMed] [Google Scholar]
  19. Gicquel C., Raffin-Sanson M. L., Gaston V., Bertagna X., Plouin P. F., Schlumberger M., Louvel A., Luton J. P., Le Bouc Y. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab. 1997 Aug;82(8):2559–2565. doi: 10.1210/jcem.82.8.4170. [DOI] [PubMed] [Google Scholar]
  20. Gloudemans T., Prinsen I., Van Unnik J. A., Lips C. J., Den Otter W., Sussenbach J. S. Insulin-like growth factor gene expression in human smooth muscle tumors. Cancer Res. 1990 Oct 15;50(20):6689–6695. [PubMed] [Google Scholar]
  21. Hankins G. R., De Souza A. T., Bentley R. C., Patel M. R., Marks J. R., Iglehart J. D., Jirtle R. L. M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene. 1996 May 2;12(9):2003–2009. [PubMed] [Google Scholar]
  22. Hao Y., Crenshaw T., Moulton T., Newcomb E., Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993 Oct 21;365(6448):764–767. doi: 10.1038/365764a0. [DOI] [PubMed] [Google Scholar]
  23. Hashimoto K., Azuma C., Koyama M., Ohashi K., Kamiura S., Nobunaga T., Kimura T., Tokugawa Y., Kanai T., Saji F. Loss of imprinting in choriocarcinoma. Nat Genet. 1995 Feb;9(2):109–110. doi: 10.1038/ng0295-109. [DOI] [PubMed] [Google Scholar]
  24. Hatada I., Inazawa J., Abe T., Nakayama M., Kaneko Y., Jinno Y., Niikawa N., Ohashi H., Fukushima Y., Iida K. Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors. Hum Mol Genet. 1996 Jun;5(6):783–788. doi: 10.1093/hmg/5.6.783. [DOI] [PubMed] [Google Scholar]
  25. Hatada I., Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995 Oct;11(2):204–206. doi: 10.1038/ng1095-204. [DOI] [PubMed] [Google Scholar]
  26. Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996 Oct;14(2):171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
  27. Hibi K., Nakamura H., Hirai A., Fujikake Y., Kasai Y., Akiyama S., Ito K., Takagi H. Loss of H19 imprinting in esophageal cancer. Cancer Res. 1996 Feb 1;56(3):480–482. [PubMed] [Google Scholar]
  28. Horsthemke B. Structure and function of the human chromosome 15 imprinting center. J Cell Physiol. 1997 Nov;173(2):237–241. doi: 10.1002/(SICI)1097-4652(199711)173:2<237::AID-JCP28>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  29. Ilvesmäki V., Kahri A. I., Miettinen P. J., Voutilainen R. Insulin-like growth factors (IGFs) and their receptors in adrenal tumors: high IGF-II expression in functional adrenocortical carcinomas. J Clin Endocrinol Metab. 1993 Sep;77(3):852–858. doi: 10.1210/jcem.77.3.8370710. [DOI] [PubMed] [Google Scholar]
  30. Jinno Y., Yun K., Nishiwaki K., Kubota T., Ogawa O., Reeve A. E., Niikawa N. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994 Mar;6(3):305–309. doi: 10.1038/ng0394-305. [DOI] [PubMed] [Google Scholar]
  31. Joyce J. A., Lam W. K., Catchpoole D. J., Jenks P., Reik W., Maher E. R., Schofield P. N. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum Mol Genet. 1997 Sep;6(9):1543–1548. doi: 10.1093/hmg/6.9.1543. [DOI] [PubMed] [Google Scholar]
  32. Karnik P., Paris M., Williams B. R., Casey G., Crowe J., Chen P. Two distinct tumor suppressor loci within chromosome 11p15 implicated in breast cancer progression and metastasis. Hum Mol Genet. 1998 May;7(5):895–903. doi: 10.1093/hmg/7.5.895. [DOI] [PubMed] [Google Scholar]
  33. Kim K. S., Lee Y. I. Biallelic expression of the H19 and IGF2 genes in hepatocellular carcinoma. Cancer Lett. 1997 Nov 11;119(2):143–148. doi: 10.1016/s0304-3835(97)00264-4. [DOI] [PubMed] [Google Scholar]
  34. Kinouchi Y., Hiwatashi N., Higashioka S., Nagashima F., Chida M., Toyota T. Relaxation of imprinting of the insulin-like growth factor II gene in colorectal cancer. Cancer Lett. 1996 Oct 1;107(1):105–108. doi: 10.1016/0304-3835(96)04348-0. [DOI] [PubMed] [Google Scholar]
  35. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Koi M., Johnson L. A., Kalikin L. M., Little P. F., Nakamura Y., Feinberg A. P. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science. 1993 Apr 16;260(5106):361–364. doi: 10.1126/science.8469989. [DOI] [PubMed] [Google Scholar]
  37. Kondo M., Matsuoka S., Uchida K., Osada H., Nagatake M., Takagi K., Harper J. W., Takahashi T., Elledge S. J., Takahashi T. Selective maternal-allele loss in human lung cancers of the maternally expressed p57KIP2 gene at 11p15.5. Oncogene. 1996 Mar 21;12(6):1365–1368. [PubMed] [Google Scholar]
  38. Kondo M., Suzuki H., Ueda R., Osada H., Takagi K., Takahashi T., Takahashi T. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene. 1995 Mar 16;10(6):1193–1198. [PubMed] [Google Scholar]
  39. Kondo M., Suzuki H., Ueda R., Takagi K., Takahashi T., Takahashi T. Parental origin of 11p15 deletions in human lung cancer. Oncogene. 1994 Oct;9(10):3063–3065. [PubMed] [Google Scholar]
  40. Lau M. M., Stewart C. E., Liu Z., Bhatt H., Rotwein P., Stewart C. L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994 Dec 15;8(24):2953–2963. doi: 10.1101/gad.8.24.2953. [DOI] [PubMed] [Google Scholar]
  41. Lee M. H., Reynisdóttir I., Massagué J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995 Mar 15;9(6):639–649. doi: 10.1101/gad.9.6.639. [DOI] [PubMed] [Google Scholar]
  42. Lee M. P., DeBaun M., Randhawa G., Reichard B. A., Elledge S. J., Feinberg A. P. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet. 1997 Aug;61(2):304–309. doi: 10.1086/514858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lee M. P., Feinberg A. P. Genomic imprinting of a human apoptosis gene homologue, TSSC3. Cancer Res. 1998 Mar 1;58(5):1052–1056. [PubMed] [Google Scholar]
  44. Li X., Adam G., Cui H., Sandstedt B., Ohlsson R., Ekström T. J. Expression, promoter usage and parental imprinting status of insulin-like growth factor II (IGF2) in human hepatoblastoma: uncoupling of IGF2 and H19 imprinting. Oncogene. 1995 Jul 20;11(2):221–229. [PubMed] [Google Scholar]
  45. Little M. H., Thomson D. B., Hayward N. K., Smith P. J. Loss of alleles on the short arm of chromosome 11 in a hepatoblastoma from a child with Beckwith-Wiedemann syndrome. Hum Genet. 1988 Jun;79(2):186–189. doi: 10.1007/BF00280564. [DOI] [PubMed] [Google Scholar]
  46. Liu J., Kahri A. I., Heikkilä P., Voutilainen R. Ribonucleic acid expression of the clustered imprinted genes, p57KIP2, insulin-like growth factor II, and H19, in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab. 1997 Jun;82(6):1766–1771. doi: 10.1210/jcem.82.6.3968. [DOI] [PubMed] [Google Scholar]
  47. Lustig-Yariv O., Schulze E., Komitowski D., Erdmann V., Schneider T., de Groot N., Hochberg A. The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene? Oncogene. 1997 Jul 10;15(2):169–177. doi: 10.1038/sj.onc.1201175. [DOI] [PubMed] [Google Scholar]
  48. Mariman E. C., van Beersum S. E., Cremers C. W., Struycken P. M., Ropers H. H. Fine mapping of a putatively imprinted gene for familial non-chromaffin paragangliomas to chromosome 11q13.1: evidence for genetic heterogeneity. Hum Genet. 1995 Jan;95(1):56–62. doi: 10.1007/BF00225075. [DOI] [PubMed] [Google Scholar]
  49. Matsuoka S., Edwards M. C., Bai C., Parker S., Zhang P., Baldini A., Harper J. W., Elledge S. J. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995 Mar 15;9(6):650–662. doi: 10.1101/gad.9.6.650. [DOI] [PubMed] [Google Scholar]
  50. McCann A. H., Miller N., O'Meara A., Pedersen I., Keogh K., Gorey T., Dervan P. A. Biallelic expression of the IGF2 gene in human breast disease. Hum Mol Genet. 1996 Aug;5(8):1123–1127. doi: 10.1093/hmg/5.8.1123. [DOI] [PubMed] [Google Scholar]
  51. Minniti C. P., Tsokos M., Newton W. A., Jr, Helman L. J. Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol. 1994 Feb;101(2):198–203. doi: 10.1093/ajcp/101.2.198. [DOI] [PubMed] [Google Scholar]
  52. Mori M., Inoue H., Shiraishi T., Mimori K., Shibuta K., Nakashima H., Mafune K., Tanaka Y., Ueo H., Barnard G. F. Relaxation of insulin-like growth factor 2 gene imprinting in esophageal cancer. Int J Cancer. 1996 Nov 15;68(4):441–446. doi: 10.1002/(SICI)1097-0215(19961115)68:4<441::AID-IJC7>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  53. Morita R., Saito S., Ishikawa J., Ogawa O., Yoshida O., Yamakawa K., Nakamura Y. Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Cancer Res. 1991 Nov 1;51(21):5817–5820. [PubMed] [Google Scholar]
  54. Moulton T., Crenshaw T., Hao Y., Moosikasuwan J., Lin N., Dembitzer F., Hensle T., Weiss L., McMorrow L., Loew T. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet. 1994 Jul;7(3):440–447. doi: 10.1038/ng0794-440. [DOI] [PubMed] [Google Scholar]
  55. Mullokandov M. R., Kholodilov N. G., Atkin N. B., Burk R. D., Johnson A. B., Klinger H. P. Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. Cancer Res. 1996 Jan 1;56(1):197–205. [PubMed] [Google Scholar]
  56. O'Keefe D., Dao D., Zhao L., Sanderson R., Warburton D., Weiss L., Anyane-Yeboa K., Tycko B. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet. 1997 Aug;61(2):295–303. doi: 10.1086/514854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Oda H., Kume H., Shimizu Y., Inoue T., Ishikawa T. Loss of imprinting of igf2 in renal-cell carcinomas. Int J Cancer. 1998 Jan 30;75(3):343–346. doi: 10.1002/(sici)1097-0215(19980130)75:3<343::aid-ijc3>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  58. Ogawa O., Eccles M. R., Szeto J., McNoe L. A., Yun K., Maw M. A., Smith P. J., Reeve A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature. 1993 Apr 22;362(6422):749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
  59. Ogawa O., McNoe L. A., Eccles M. R., Morison I. M., Reeve A. E. Human insulin-like growth factor type I and type II receptors are not imprinted. Hum Mol Genet. 1993 Dec;2(12):2163–2165. doi: 10.1093/hmg/2.12.2163. [DOI] [PubMed] [Google Scholar]
  60. Ohlsson R., Nyström A., Pfeifer-Ohlsson S., Töhönen V., Hedborg F., Schofield P., Flam F., Ekström T. J. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993 May;4(1):94–97. doi: 10.1038/ng0593-94. [DOI] [PubMed] [Google Scholar]
  61. Orlow I., Iavarone A., Crider-Miller S. J., Bonilla F., Latres E., Lee M. H., Gerald W. L., Massagué J., Weissman B. E., Cordón-Cardó C. Cyclin-dependent kinase inhibitor p57KIP2 in soft tissue sarcomas and Wilms'tumors. Cancer Res. 1996 Mar 15;56(6):1219–1221. [PubMed] [Google Scholar]
  62. Ouyang H., Shiwaku H. O., Hagiwara H., Miura K., Abe T., Kato Y., Ohtani H., Shiiba K., Souza R. F., Meltzer S. J. The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach, and colorectum. Cancer Res. 1997 May 15;57(10):1851–1854. [PubMed] [Google Scholar]
  63. Pedone P. V., Tirabosco R., Cavazzana A. O., Ungaro P., Basso G., Luksch R., Carli M., Bruni C. B., Frunzio R., Riccio A. Mono- and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors. Hum Mol Genet. 1994 Jul;3(7):1117–1121. doi: 10.1093/hmg/3.7.1117. [DOI] [PubMed] [Google Scholar]
  64. Qian N., Frank D., O'Keefe D., Dao D., Zhao L., Yuan L., Wang Q., Keating M., Walsh C., Tycko B. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet. 1997 Nov;6(12):2021–2029. doi: 10.1093/hmg/6.12.2021. [DOI] [PubMed] [Google Scholar]
  65. Queimado L., Seruca R., Costa-Pereira A., Castedo S. Identification of two distinct regions of deletion at 6q in gastric carcinoma. Genes Chromosomes Cancer. 1995 Sep;14(1):28–34. doi: 10.1002/gcc.2870140106. [DOI] [PubMed] [Google Scholar]
  66. Rachmilewitz J., Elkin M., Rosensaft J., Gelman-Kohan Z., Ariel I., Lustig O., Schneider T., Goshen R., Biran H., de Groot N. H19 expression and tumorigenicity of choriocarcinoma derived cell lines. Oncogene. 1995 Sep 7;11(5):863–870. [PubMed] [Google Scholar]
  67. Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
  68. Reid L. H., Crider-Miller S. J., West A., Lee M. H., Massagué J., Weissman B. E. Genomic organization of the human p57KIP2 gene and its analysis in the G401 Wilms' tumor assay. Cancer Res. 1996 Mar 15;56(6):1214–1218. [PubMed] [Google Scholar]
  69. Reid L. H., West A., Gioeli D. G., Phillips K. K., Kelleher K. F., Araujo D., Stanbridge E. J., Dowdy S. F., Gerhard D. S., Weissman B. E. Localization of a tumor suppressor gene in 11p15.5 using the G401 Wilms' tumor assay. Hum Mol Genet. 1996 Feb;5(2):239–247. doi: 10.1093/hmg/5.2.239. [DOI] [PubMed] [Google Scholar]
  70. Rubin R., Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest. 1995 Sep;73(3):311–331. [PubMed] [Google Scholar]
  71. Sabbioni S., Barbanti-Brodano G., Croce C. M., Negrini M. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res. 1997 Oct 15;57(20):4493–4497. [PubMed] [Google Scholar]
  72. Saito S., Saito H., Koi S., Sagae S., Kudo R., Saito J., Noda K., Nakamura Y. Fine-scale deletion mapping of the distal long arm of chromosome 6 in 70 human ovarian cancers. Cancer Res. 1992 Oct 15;52(20):5815–5817. [PubMed] [Google Scholar]
  73. Schwienbacher C., Sabbioni S., Campi M., Veronese A., Bernardi G., Menegatti A., Hatada I., Mukai T., Ohashi H., Barbanti-Brodano G. Transcriptional map of 170-kb region at chromosome 11p15.5: identification and mutational analysis of the BWR1A gene reveals the presence of mutations in tumor samples. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3873–3878. doi: 10.1073/pnas.95.7.3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Scott J., Cowell J., Robertson M. E., Priestley L. M., Wadey R., Hopkins B., Pritchard J., Bell G. I., Rall L. B., Graham C. F. Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. Nature. 1985 Sep 19;317(6034):260–262. doi: 10.1038/317260a0. [DOI] [PubMed] [Google Scholar]
  75. Scrable H., Cavenee W., Ghavimi F., Lovell M., Morgan K., Sapienza C. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7480–7484. doi: 10.1073/pnas.86.19.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sell C., Rubini M., Rubin R., Liu J. P., Efstratiadis A., Baserga R. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11217–11221. doi: 10.1073/pnas.90.23.11217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sohda T., Soejima H., Matsumoto T., Yun K. Insulin-like growth factor 2 gene imprinting in clear cell sarcoma of the kidney. Hum Pathol. 1997 Nov;28(11):1315–1318. doi: 10.1016/s0046-8177(97)90210-0. [DOI] [PubMed] [Google Scholar]
  78. Souza R. F., Appel R., Yin J., Wang S., Smolinski K. N., Abraham J. M., Zou T. T., Shi Y. Q., Lei J., Cottrell J. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet. 1996 Nov;14(3):255–257. doi: 10.1038/ng1196-255. [DOI] [PubMed] [Google Scholar]
  79. Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
  80. Struycken P. M., Cremers C. W., Mariman E. C., Joosten F. B., Bleker R. J. Glomus tumours and genomic imprinting: influence of inheritance along the paternal or maternal line. Clin Otolaryngol Allied Sci. 1997 Feb;22(1):71–76. doi: 10.1046/j.1365-2273.1997.00884.x. [DOI] [PubMed] [Google Scholar]
  81. Suzuki H., Ueda R., Takahashi T., Takahashi T. Altered imprinting in lung cancer. Nat Genet. 1994 Apr;6(4):332–333. doi: 10.1038/ng0494-332. [DOI] [PubMed] [Google Scholar]
  82. Taniguchi T., Sullivan M. J., Ogawa O., Reeve A. E. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2159–2163. doi: 10.1073/pnas.92.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Thompson J. S., Reese K. J., DeBaun M. R., Perlman E. J., Feinberg A. P. Reduced expression of the cyclin-dependent kinase inhibitor gene p57KIP2 in Wilms' tumor. Cancer Res. 1996 Dec 15;56(24):5723–5727. [PubMed] [Google Scholar]
  84. Tokino T., Urano T., Furuhata T., Matsushima M., Miyatsu T., Sasaki S., Nakamura Y. Characterization of the human p57KIP2 gene: alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis. Hum Genet. 1996 May;97(5):625–631. doi: 10.1007/BF02281873. [DOI] [PubMed] [Google Scholar]
  85. Tran Y. K., Newsham I. F. High-density marker analysis of 11p15.5 in non-small cell lung carcinomas reveals allelic deletion of one shared and one distinct region when compared to breast carcinomas. Cancer Res. 1996 Jul 1;56(13):2916–2921. [PubMed] [Google Scholar]
  86. Uyeno S., Aoki Y., Nata M., Sagisaka K., Kayama T., Yoshimoto T., Ono T. IGF2 but not H19 shows loss of imprinting in human glioma. Cancer Res. 1996 Dec 1;56(23):5356–5359. [PubMed] [Google Scholar]
  87. Verkerk A. J., Ariel I., Dekker M. C., Schneider T., van Gurp R. J., de Groot N., Gillis A. J., Oosterhuis J. W., Hochberg A. A., Looijenga L. H. Unique expression patterns of H19 in human testicular cancers of different etiology. Oncogene. 1997 Jan 9;14(1):95–107. doi: 10.1038/sj.onc.1200802. [DOI] [PubMed] [Google Scholar]
  88. Virmani A. K., Fong K. M., Kodagoda D., McIntire D., Hung J., Tonk V., Minna J. D., Gazdar A. F. Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chromosomes Cancer. 1998 Apr;21(4):308–319. doi: 10.1002/(sici)1098-2264(199804)21:4<308::aid-gcc4>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  89. Visser M., Sijmons C., Bras J., Arceci R. J., Godfried M., Valentijn L. J., Voûte P. A., Baas F. Allelotype of pediatric rhabdomyosarcoma. Oncogene. 1997 Sep;15(11):1309–1314. doi: 10.1038/sj.onc.1201302. [DOI] [PubMed] [Google Scholar]
  90. Wada M., Seeger R. C., Mizoguchi H., Koeffler H. P. Maintenance of normal imprinting of H19 and IGF2 genes in neuroblastoma. Cancer Res. 1995 Aug 1;55(15):3386–3388. [PubMed] [Google Scholar]
  91. Walsh C., Miller S. J., Flam F., Fisher R. A., Ohlsson R. Paternally derived H19 is differentially expressed in malignant and nonmalignant trophoblast. Cancer Res. 1995 Mar 1;55(5):1111–1116. [PubMed] [Google Scholar]
  92. Wang S., Souza R. F., Kong D., Yin J., Smolinski K. N., Zou T. T., Frank T., Young J., Flanders K. C., Sugimura H. Deficient transforming growth factor-beta1 activation and excessive insulin-like growth factor II (IGFII) expression in IGFII receptor-mutant tumors. Cancer Res. 1997 Jul 1;57(13):2543–2546. [PubMed] [Google Scholar]
  93. Wang W. H., Duan J. X., Vu T. H., Hoffman A. R. Increased expression of the insulin-like growth factor-II gene in Wilms' tumor is not dependent on loss of genomic imprinting or loss of heterozygosity. J Biol Chem. 1996 Nov 1;271(44):27863–27870. doi: 10.1074/jbc.271.44.27863. [DOI] [PubMed] [Google Scholar]
  94. Watanabe H., Pan Z. Q., Schreiber-Agus N., DePinho R. A., Hurwitz J., Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1392–1397. doi: 10.1073/pnas.95.4.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
  96. Werner H., LeRoith D. The role of the insulin-like growth factor system in human cancer. Adv Cancer Res. 1996;68:183–223. doi: 10.1016/s0065-230x(08)60354-1. [DOI] [PubMed] [Google Scholar]
  97. Williams J. C., Brown K. W., Mott M. G., Maitland N. J. Maternal allele loss in Wilms' tumour. Lancet. 1989 Feb 4;1(8632):283–284. doi: 10.1016/s0140-6736(89)91300-7. [DOI] [PubMed] [Google Scholar]
  98. Wu H. K., Squire J. A., Catzavelos C. G., Weksberg R. Relaxation of imprinting of human insulin-like growth factor II gene, IGF2, in sporadic breast carcinomas. Biochem Biophys Res Commun. 1997 Jun 9;235(1):123–129. doi: 10.1006/bbrc.1997.6744. [DOI] [PubMed] [Google Scholar]
  99. Wu H. K., Weksberg R., Minden M. D., Squire J. A. Loss of imprinting of human insulin-like growth factor II gene, IGF2, in acute myeloid leukemia. Biochem Biophys Res Commun. 1997 Feb 13;231(2):466–472. doi: 10.1006/bbrc.1997.6127. [DOI] [PubMed] [Google Scholar]
  100. Wu M. S., Wang H. P., Lin C. C., Sheu J. C., Shun C. T., Lee W. J., Lin J. T. Loss of imprinting and overexpression of IGF2 gene in gastric adenocarcinoma. Cancer Lett. 1997 Nov 25;120(1):9–14. doi: 10.1016/s0304-3835(97)00279-6. [DOI] [PubMed] [Google Scholar]
  101. Xu Y. Q., Grundy P., Polychronakos C. Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor. Oncogene. 1997 Mar 6;14(9):1041–1046. doi: 10.1038/sj.onc.1200926. [DOI] [PubMed] [Google Scholar]
  102. Xu Y., Goodyer C. G., Deal C., Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun. 1993 Dec 15;197(2):747–754. doi: 10.1006/bbrc.1993.2542. [DOI] [PubMed] [Google Scholar]
  103. Yamada T., De Souza A. T., Finkelstein S., Jirtle R. L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10351–10355. doi: 10.1073/pnas.94.19.10351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Yun K., Fukumoto M., Jinno Y. Monoallelic expression of the insulin-like growth factor-2 gene in ovarian cancer. Am J Pathol. 1996 Apr;148(4):1081–1087. [PMC free article] [PubMed] [Google Scholar]
  105. Yun K., Molenaar A. J., Fiedler A. M., Mark A. J., Eccles M. R., Becroft D. M., Reeve A. E. Insulin-like growth factor II messenger ribonucleic acid expression in Wilms tumor, nephrogenic rest, and kidney. Lab Invest. 1993 Nov;69(5):603–615. [PubMed] [Google Scholar]
  106. Zhan S., Shapiro D. N., Helman L. J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest. 1994 Jul;94(1):445–448. doi: 10.1172/JCI117344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Zhan S., Shapiro D. N., Helman L. J. Loss of imprinting of IGF2 in Ewing's sarcoma. Oncogene. 1995 Dec 21;11(12):2503–2507. [PubMed] [Google Scholar]
  108. Zhang Y., Tycko B. Monoallelic expression of the human H19 gene. Nat Genet. 1992 Apr;1(1):40–44. doi: 10.1038/ng0492-40. [DOI] [PubMed] [Google Scholar]
  109. de Bleser P. J., Jannes P., van Buul-Offers S. C., Hoogerbrugge C. M., van Schravendijk C. F., Niki T., Rogiers V., van den Brande J. L., Wisse E., Geerts A. Insulinlike growth factor-II/mannose 6-phosphate receptor is expressed on CCl4-exposed rat fat-storing cells and facilitates activation of latent transforming growth factor-beta in cocultures with sinusoidal endothelial cells. Hepatology. 1995 May;21(5):1429–1437. doi: 10.1002/hep.1840210529. [DOI] [PubMed] [Google Scholar]
  110. van Gurp R. J., Oosterhuis J. W., Kalscheuer V., Mariman E. C., Looijenga L. H. Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J Natl Cancer Inst. 1994 Jul 20;86(14):1070–1075. doi: 10.1093/jnci/86.14.1070. [DOI] [PubMed] [Google Scholar]
  111. van Schothorst E. M., Jansen J. C., Bardoel A. F., van der Mey A. G., James M. J., Sobol H., Weissenbach J., van Ommen G. J., Cornelisse C. J., Devilee P. Confinement of PGL, an imprinted gene causing hereditary paragangliomas, to a 2-cM interval on 11q22-q23 and exclusion of DRD2 and NCAM as candidate genes. Eur J Hum Genet. 1996;4(5):267–273. doi: 10.1159/000472213. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES