Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1998 Aug;51(4):215–217. doi: 10.1136/mp.51.4.215

Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100.

J M Polski 1, S Kimzey 1, R W Percival 1, L E Grosso 1
PMCID: PMC395639  PMID: 9893748

Abstract

AIM: To provide a more efficient method for isolating DNA from peripheral blood for use in diagnostic DNA mutation analysis. METHODS: The use of blood impregnated filter paper and Chelex-100 in DNA isolation was evaluated and compared with standard DNA isolation techniques. RESULTS: In polymerase chain reaction (PCR) based assays of five point mutations, identical results were obtained with DNA isolated routinely from peripheral blood and isolated using the filter paper and Chelex-100 method. CONCLUSION: In the clinical setting, this method provides a useful alternative to conventional DNA isolation. It is easily implemented and inexpensive, and provides sufficient, stable DNA for multiple assays. The potential for specimen contamination is reduced because most of the steps are performed in a single microcentrifuge tube. In addition, this method provides for easy storage and transport of samples from the point of acquisition.

Full Text

The Full Text of this article is available as a PDF (116.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertina R. M., Koeleman B. P., Koster T., Rosendaal F. R., Dirven R. J., de Ronde H., van der Velden P. A., Reitsma P. H. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994 May 5;369(6475):64–67. doi: 10.1038/369064a0. [DOI] [PubMed] [Google Scholar]
  2. Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
  3. Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., Boers G. J., den Heijer M., Kluijtmans L. A., van den Heuvel L. P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995 May;10(1):111–113. doi: 10.1038/ng0595-111. [DOI] [PubMed] [Google Scholar]
  4. Grimberg J., Nawoschik S., Belluscio L., McKee R., Turck A., Eisenberg A. A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res. 1989 Oct 25;17(20):8390–8390. doi: 10.1093/nar/17.20.8390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jin Y., Dietz H. C., Nurden A., Bray P. F. Single-strand conformation polymorphism analysis is a rapid and effective method for the identification of mutations and polymorphisms in the gene for glycoprotein IIIa. Blood. 1993 Oct 15;82(8):2281–2288. [PubMed] [Google Scholar]
  6. Kain K. C., Lanar D. E. Determination of genetic variation within Plasmodium falciparum by using enzymatically amplified DNA from filter paper disks impregnated with whole blood. J Clin Microbiol. 1991 Jun;29(6):1171–1174. doi: 10.1128/jcm.29.6.1171-1174.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kendall T. L., Byerley D. J., Dean R. Isolation of DNA from blood. Anal Biochem. 1991 May 15;195(1):74–76. doi: 10.1016/0003-2697(91)90297-7. [DOI] [PubMed] [Google Scholar]
  8. Laitinen J., Samarut J., Hölttä E. A nontoxic and versatile protein salting-out method for isolation of DNA. Biotechniques. 1994 Aug;17(2):316, 318, 320-2. [PubMed] [Google Scholar]
  9. McCabe E. R., Huang S. Z., Seltzer W. K., Law M. L. DNA microextraction from dried blood spots on filter paper blotters: potential applications to newborn screening. Hum Genet. 1987 Mar;75(3):213–216. doi: 10.1007/BF00281061. [DOI] [PubMed] [Google Scholar]
  10. Mercier B., Gaucher C., Feugeas O., Mazurier C. Direct PCR from whole blood, without DNA extraction. Nucleic Acids Res. 1990 Oct 11;18(19):5908–5908. doi: 10.1093/nar/18.19.5908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sepp R., Szabó I., Uda H., Sakamoto H. Rapid techniques for DNA extraction from routinely processed archival tissue for use in PCR. J Clin Pathol. 1994 Apr;47(4):318–323. doi: 10.1136/jcp.47.4.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Walsh P. S., Metzger D. A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991 Apr;10(4):506–513. [PubMed] [Google Scholar]
  13. Winberg G. A rapid method for preparing DNA from blood, suited for PCR screening of transgenes in mice. PCR Methods Appl. 1991 Aug;1(1):72–74. doi: 10.1101/gr.1.1.72. [DOI] [PubMed] [Google Scholar]
  14. de Lamballerie X., Zandotti C., Vignoli C., Bollet C., de Micco P. A one-step microbial DNA extraction method using "Chelex 100" suitable for gene amplification. Res Microbiol. 1992 Oct;143(8):785–790. doi: 10.1016/0923-2508(92)90107-y. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES