Abstract
AIMS: Spontaneous apoptosis and expression of the apoptotic regulatory proteins Bax, Bcl-x, and Bcl-2 were investigated in 50 colorectal carcinomas. The p53 genotypes/phenotypes and BAX genotypes were also determined, and possible associations of these with apoptosis and/or with expression of the different apoptotic regulatory proteins were studied. METHODS: Terminal deoxynucleotidyl transferase (TdT) mediated dUTP labelling of DNA fragments was used to detect apoptotic tumour cells in sections and peroxidase immunohistochemistry was used to assess protein expression. p53 genotype/phenotype was determined using constant denaturant gel electrophoresis/immunoblotting and bax genotype was determined using polymerase chain reaction based methods. RESULTS: The distribution of tumour apoptotic indices was bimodal with a natural cut off at 1.0% (range, 0.0-5.4%); the median fraction of apoptotic tumour cells was 0.8%. Tumour apoptosis was not associated significantly with tumour DNA ploidy status. Normal mucosal tissue had less than 0.1% apoptotic cells. Staining intensities for Bax, Bcl-x, and Bcl-2 were strong; that is, equivalent to or greater than positive normal mucosal cells, in 11 of 50, 20 of 49, and 20 of 48 carcinomas. Frameshift mutations in the bax gene were detected in three of 42 tumours analysed, all of which were DNA diploid, and Bax protein expression in these tumours was absent or very low. Bax, Bcl-x, and Bcl-2 protein expression were not correlated with tumour apoptosis or tumour DNA ploidy status. p53 was expressed in 34 of 50 tumours and p53 gene mutations were detected in 22 of 29 p53 positive tumours analysed. Apoptosis was significantly lower in a greater number of p53 positive tumours than p53 negative tumours. In addition, Bcl-2 protein expression was significantly higher in a greater number of p53 positive tumours compared with p53 negative tumours. Bax and Bcl-x protein expression were not significantly associated with p53 phenotype/genotype. CONCLUSIONS: The results indicate that acquisition of a p53 phenotype is associated with lower spontaneous apoptosis and higher expression of Bcl-2. The results also suggest that p53 is not a major determinant for Bax expression in colorectal carcinomas in vivo.
Full Text
The Full Text of this article is available as a PDF (273.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen T. I., Børresen A. L. Alterations of the TP53 gene as a potential prognostic marker in breast carcinomas. Advantages of using constant denaturant gel electrophoresis in mutation detection. Diagn Mol Pathol. 1995 Sep;4(3):203–211. doi: 10.1097/00019606-199509000-00008. [DOI] [PubMed] [Google Scholar]
- Ayhan A., Yasui W., Yokozaki H., Seto M., Ueda R., Tahara E. Loss of heterozygosity at the bcl-2 gene locus and expression of bcl-2 in human gastric and colorectal carcinomas. Jpn J Cancer Res. 1994 Jun;85(6):584–591. doi: 10.1111/j.1349-7006.1994.tb02400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baretton G. B., Diebold J., Christoforis G., Vogt M., Müller C., Dopfer K., Schneiderbanger K., Schmidt M., Löhrs U. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Aspects of carcinogenesis and prognostic significance. Cancer. 1996 Jan 15;77(2):255–264. doi: 10.1002/(SICI)1097-0142(19960115)77:2<255::AID-CNCR6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Bargou R. C., Daniel P. T., Mapara M. Y., Bommert K., Wagener C., Kallinich B., Royer H. D., Dörken B. Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer. 1995 Mar 16;60(6):854–859. doi: 10.1002/ijc.2910600622. [DOI] [PubMed] [Google Scholar]
- Bronner M. P., Culin C., Reed J. C., Furth E. E. The bcl-2 proto-oncogene and the gastrointestinal epithelial tumor progression model. Am J Pathol. 1995 Jan;146(1):20–26. [PMC free article] [PubMed] [Google Scholar]
- De Angelis P., Stokke T., Smedshammer L., Lothe R. A., Lehne G., Chen Y., Clausen O. P. P-glycoprotein is not expressed in a majority of colorectal carcinomas and is not regulated by mutant p53 in vivo. Br J Cancer. 1995 Aug;72(2):307–311. doi: 10.1038/bjc.1995.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedlander P., Haupt Y., Prives C., Oren M. A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol. 1996 Sep;16(9):4961–4971. doi: 10.1128/mcb.16.9.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hague A., Moorghen M., Hicks D., Chapman M., Paraskeva C. BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene. 1994 Nov;9(11):3367–3370. [PubMed] [Google Scholar]
- Haldar S., Negrini M., Monne M., Sabbioni S., Croce C. M. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res. 1994 Apr 15;54(8):2095–2097. [PubMed] [Google Scholar]
- Hovig E., Smith-Sørensen B., Brøgger A., Børresen A. L. Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat Res. 1991 Jan;262(1):63–71. doi: 10.1016/0165-7992(91)90108-g. [DOI] [PubMed] [Google Scholar]
- Jacobson M. D., Weil M., Raff M. C. Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347–354. doi: 10.1016/s0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
- Jen J., Kim H., Piantadosi S., Liu Z. F., Levitt R. C., Sistonen P., Kinzler K. W., Vogelstein B., Hamilton S. R. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med. 1994 Jul 28;331(4):213–221. doi: 10.1056/NEJM199407283310401. [DOI] [PubMed] [Google Scholar]
- Krajewska M., Moss S. F., Krajewski S., Song K., Holt P. R., Reed J. C. Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res. 1996 May 15;56(10):2422–2427. [PubMed] [Google Scholar]
- Krajewski S., Krajewska M., Shabaik A., Miyashita T., Wang H. G., Reed J. C. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol. 1994 Dec;145(6):1323–1336. [PMC free article] [PubMed] [Google Scholar]
- Krajewski S., Krajewska M., Shabaik A., Wang H. G., Irie S., Fong L., Reed J. C. Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res. 1994 Nov 1;54(21):5501–5507. [PubMed] [Google Scholar]
- Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
- Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
- Ludwig R. L., Bates S., Vousden K. H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol. 1996 Sep;16(9):4952–4960. doi: 10.1128/mcb.16.9.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijerink J. P., Smetsers T. F., Slöetjes A. W., Linders E. H., Mensink E. J. Bax mutations in cell lines derived from hematological malignancies. Leukemia. 1995 Nov;9(11):1828–1832. [PubMed] [Google Scholar]
- Merritt A. J., Potten C. S., Watson A. J., Loh D. Y., Nakayama K., Nakayama K., Hickman J. A. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci. 1995 Jun;108(Pt 6):2261–2271. doi: 10.1242/jcs.108.6.2261. [DOI] [PubMed] [Google Scholar]
- Miyashita T., Harigai M., Hanada M., Reed J. C. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 1994 Jun 15;54(12):3131–3135. [PubMed] [Google Scholar]
- Miyashita T., Krajewski S., Krajewska M., Wang H. G., Lin H. K., Liebermann D. A., Hoffman B., Reed J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994 Jun;9(6):1799–1805. [PubMed] [Google Scholar]
- Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995 Jan 27;80(2):293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
- Oltvai Z. N., Milliman C. L., Korsmeyer S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993 Aug 27;74(4):609–619. doi: 10.1016/0092-8674(93)90509-o. [DOI] [PubMed] [Google Scholar]
- Rampino N., Yamamoto H., Ionov Y., Li Y., Sawai H., Reed J. C., Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997 Feb 14;275(5302):967–969. doi: 10.1126/science.275.5302.967. [DOI] [PubMed] [Google Scholar]
- Ried T., Knutzen R., Steinbeck R., Blegen H., Schröck E., Heselmeyer K., du Manoir S., Auer G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer. 1996 Apr;15(4):234–245. doi: 10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- Sedlak T. W., Oltvai Z. N., Yang E., Wang K., Boise L. H., Thompson C. B., Korsmeyer S. J. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7834–7838. doi: 10.1073/pnas.92.17.7834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw P., Bovey R., Tardy S., Sahli R., Sordat B., Costa J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4495–4499. doi: 10.1073/pnas.89.10.4495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinicrope F. A., Ruan S. B., Cleary K. R., Stephens L. C., Lee J. J., Levin B. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res. 1995 Jan 15;55(2):237–241. [PubMed] [Google Scholar]
- Williams G. T., Smith C. A. Molecular regulation of apoptosis: genetic controls on cell death. Cell. 1993 Sep 10;74(5):777–779. doi: 10.1016/0092-8674(93)90457-2. [DOI] [PubMed] [Google Scholar]
- Xie X., Clausen O. P., De Angelis P., Boysen M. Bax expression has prognostic significance that is enhanced when combined with AgNOR counts in glottic carcinomas. Br J Cancer. 1998 Jul;78(1):100–105. doi: 10.1038/bjc.1998.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang E., Korsmeyer S. J. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood. 1996 Jul 15;88(2):386–401. [PubMed] [Google Scholar]
- Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991 Jul 25;352(6333):345–347. doi: 10.1038/352345a0. [DOI] [PubMed] [Google Scholar]
- van de Schepop H. A., de Jong J. S., van Diest P. J., Baak J. P. Counting of apoptotic cells: a methodological study in invasive breast cancer. Clin Mol Pathol. 1996 Aug;49(4):M214–M217. doi: 10.1136/mp.49.4.m214. [DOI] [PMC free article] [PubMed] [Google Scholar]