Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Feb;52(1):1–10. doi: 10.1136/mp.52.1.1

Demystified ... the polymerase chain reaction.

K R Baumforth 1, P N Nelson 1, J E Digby 1, J D O'Neil 1, P G Murray 1
PMCID: PMC395663  PMID: 10439832

Abstract

Since its initial description over twenty years ago the PCR has become one of the most valuable and flexible tools available to biomedical research. Subsequently, refinements and modifications to the basic approach, many of which have been described in this review, have enabled the application of the PCR to many areas of diagnostic medicine and have ensured its rapid acceptance as a routine test in many pathology disciplines. The growing importance of molecular approaches to the diagnosis of disease, particularly in histopathology, will continue to secure an ever expanding role for the PCR in diagnostic pathology.

Full Text

The Full Text of this article is available as a PDF (292.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dennes W. J., Slater D. M., Bennett P. R. Nitric oxide synthase mRNA expression in human fetal membranes: a possible role in parturition. Biochem Biophys Res Commun. 1997 Apr 7;233(1):276–278. doi: 10.1006/bbrc.1997.6439. [DOI] [PubMed] [Google Scholar]
  2. Grompe M. The rapid detection of unknown mutations in nucleic acids. Nat Genet. 1993 Oct;5(2):111–117. doi: 10.1038/ng1093-111. [DOI] [PubMed] [Google Scholar]
  3. Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jackson D. P., Lewis F. A., Taylor G. R., Boylston A. W., Quirke P. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J Clin Pathol. 1990 Jun;43(6):499–504. doi: 10.1136/jcp.43.6.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kleppe K., Ohtsuka E., Kleppe R., Molineux I., Khorana H. G. Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J Mol Biol. 1971 Mar 14;56(2):341–361. doi: 10.1016/0022-2836(71)90469-4. [DOI] [PubMed] [Google Scholar]
  6. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  7. Lench N., Stanier P., Williamson R. Simple non-invasive method to obtain DNA for gene analysis. Lancet. 1988 Jun 18;1(8599):1356–1358. doi: 10.1016/s0140-6736(88)92178-2. [DOI] [PubMed] [Google Scholar]
  8. Marriott J. B., Cookson S., Carlin E., Youle M., Hawkins D. A., Nelson M., Pearson M., Vaughan A. N., Gazzard B., Dalgleish A. G. A double-blind placebo-controlled phase II trial of thalidomide in asymptomatic HIV-positive patients: clinical tolerance and effect on activation markers and cytokines. AIDS Res Hum Retroviruses. 1997 Dec 10;13(18):1625–1631. doi: 10.1089/aid.1997.13.1625. [DOI] [PubMed] [Google Scholar]
  9. Montague C. T., Prins J. B., Sanders L., Digby J. E., O'Rahilly S. Depot- and sex-specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. Diabetes. 1997 Mar;46(3):342–347. doi: 10.2337/diab.46.3.342. [DOI] [PubMed] [Google Scholar]
  10. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
  11. Nelson P. N., Lever A. M., Bruckner F. E., Isenberg D. A., Kessaris N., Hay F. C. Polymerase chain reaction fails to incriminate exogenous retroviruses HTLV-I and HIV-1 in rheumatological diseases although a minority of sera cross react with retroviral antigens. Ann Rheum Dis. 1994 Nov;53(11):749–754. doi: 10.1136/ard.53.11.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nelson P. N., Rawal B. K., Boriskin Y. S., Mathers K. E., Powles R. L., Steel H. M., Tryhorn Y. S., Butcher P. D., Booth J. C. A polymerase chain reaction to detect a spliced late transcript of human cytomegalovirus in the blood of bone marrow transplant recipients. J Virol Methods. 1996 Feb;56(2):139–148. doi: 10.1016/0166-0934(95)01900-6. [DOI] [PubMed] [Google Scholar]
  13. Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pan L. X., Diss T. C., Isaacson P. G. The polymerase chain reaction in histopathology. Histopathology. 1995 Mar;26(3):201–217. doi: 10.1111/j.1365-2559.1995.tb01434.x. [DOI] [PubMed] [Google Scholar]
  15. Panet A., Khorana H. G. Studies on polynucleotides. The linkage of deoxyribopolynucleotide templates to cellulose and its use in their replication. J Biol Chem. 1974 Aug 25;249(16):5213–5221. [PubMed] [Google Scholar]
  16. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  17. Sarkar G., Sommer S. S. Shedding light on PCR contamination. Nature. 1990 Jan 4;343(6253):27–27. doi: 10.1038/343027a0. [DOI] [PubMed] [Google Scholar]
  18. Silver J., Keerikatte V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol. 1989 May;63(5):1924–1928. doi: 10.1128/jvi.63.5.1924-1928.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop J. O., Brown A. J. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol. 1990 Feb;64(2):864–872. doi: 10.1128/jvi.64.2.864-872.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  21. Southern E. Gel electrophoresis of restriction fragments. Methods Enzymol. 1979;68:152–176. doi: 10.1016/0076-6879(79)68011-4. [DOI] [PubMed] [Google Scholar]
  22. Taylor-Wiedeman J., Sissons J. G., Borysiewicz L. K., Sinclair J. H. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991 Sep;72(Pt 9):2059–2064. doi: 10.1099/0022-1317-72-9-2059. [DOI] [PubMed] [Google Scholar]
  23. Triglia T., Peterson M. G., Kemp D. J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 1988 Aug 25;16(16):8186–8186. doi: 10.1093/nar/16.16.8186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Uhlmann V., Silva I., Luttich K., Picton S., O'Leary J. J. In cell amplification. Mol Pathol. 1998 Jun;51(3):119–130. doi: 10.1136/mp.51.3.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Warford A., Pringle J. H., Hay J., Henderson S. D., Lauder I. Southern blot analysis of DNA extracted from formal-saline fixed and paraffin wax embedded tissue. J Pathol. 1988 Apr;154(4):313–320. doi: 10.1002/path.1711540406. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES