Abstract
The hydrolysis of peptide bonds is an integral part of most physiological and pathological processes, yet knowledge is often lacking as to which peptide bonds are cleaved, in which protein substrates, in which order, and by which proteolytic enzymes. An increase in our understanding of these processes will enhance understanding of the pathogenesis underlying many diseases and might aid in the recognition of new targets for therapeutic intervention. This article reviews the development, design, and use of antibodies for the detection of specific peptide bond cleavage events, and describes how the application of such antibodies can increase our understanding of the roles played by proteolytic enzymes in physiology and pathology.
Full Text
The Full Text of this article is available as a PDF (264.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aznavoorian S., Murphy A. N., Stetler-Stevenson W. G., Liotta L. A. Molecular aspects of tumor cell invasion and metastasis. Cancer. 1993 Feb 15;71(4):1368–1383. doi: 10.1002/1097-0142(19930215)71:4<1368::aid-cncr2820710432>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Baumeister W., Cejka Z., Kania M., Seemüller E. The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment. Biol Chem. 1997 Mar-Apr;378(3-4):121–130. doi: 10.1515/bchm.1997.378.3-4.121. [DOI] [PubMed] [Google Scholar]
- Bernatowicz M. S., Matsueda G. R. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem. 1986 May 15;155(1):95–102. doi: 10.1016/0003-2697(86)90231-9. [DOI] [PubMed] [Google Scholar]
- Billinghurst R. C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Rorabeck C., Mitchell P., Hambor J., Diekmann O., Tschesche H. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997 Apr 1;99(7):1534–1545. doi: 10.1172/JCI119316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buttle D. J., Fowles A., Ilic M. Z., Handley C. J. "Aggrecanase" activity is implicated in tumour necrosis factor alpha mediated cartilage aggrecan breakdown but is not detected by an in vitro assay. Mol Pathol. 1997 Jun;50(3):153–159. doi: 10.1136/mp.50.3.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman H. A., Riese R. J., Shi G. P. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol. 1997;59:63–88. doi: 10.1146/annurev.physiol.59.1.63. [DOI] [PubMed] [Google Scholar]
- Couser W. G. Pathogenesis of glomerulonephritis. Kidney Int Suppl. 1993 Jul;42:S19–S26. [PubMed] [Google Scholar]
- Fosang A. J., Last K., Gardiner P., Jackson D. C., Brown L. Development of a cleavage-site-specific monoclonal antibody for detecting metalloproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem J. 1995 Aug 15;310(Pt 1):337–343. doi: 10.1042/bj3100337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fosang A. J., Last K., Maciewicz R. A. Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest. 1996 Nov 15;98(10):2292–2299. doi: 10.1172/JCI119040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haass C., Selkoe D. J. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell. 1993 Dec 17;75(6):1039–1042. doi: 10.1016/0092-8674(93)90312-e. [DOI] [PubMed] [Google Scholar]
- Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A. R. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994 Apr;93(4):1722–1732. doi: 10.1172/JCI117156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes C. E., Caterson B., Fosang A. J., Roughley P. J., Mort J. S. Monoclonal antibodies that specifically recognize neoepitope sequences generated by 'aggrecanase' and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J. 1995 Feb 1;305(Pt 3):799–804. doi: 10.1042/bj3050799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes C. E., Caterson B., White R. J., Roughley P. J., Mort J. S. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. Application to studies of human link protein cleavage by stromelysin. J Biol Chem. 1992 Aug 15;267(23):16011–16014. [PubMed] [Google Scholar]
- Hui K. Y., Haber E., Matsueda G. R. Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science. 1983 Dec 9;222(4628):1129–1132. doi: 10.1126/science.6648524. [DOI] [PubMed] [Google Scholar]
- Kikuchi H., Imajoh-Ohmi S., Kanegasaki S. Novel antibodies specific for proteolyzed forms of protein kinase C: production of anti-peptide antibodies available for in situ analysis of intracellular limited proteolysis. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):171–176. doi: 10.1016/0167-4838(93)90144-g. [DOI] [PubMed] [Google Scholar]
- Knight K. R., Burdon J. G., Cook L., Brenton S., Ayad M., Janus E. D. The proteinase-antiproteinase theory of emphysema: a speculative analysis of recent advances into the pathogenesis of emphysema. Respirology. 1997 Jun;2(2):91–95. doi: 10.1111/j.1440-1843.1997.tb00060.x. [DOI] [PubMed] [Google Scholar]
- Lark M. W., Bayne E. K., Flanagan J., Harper C. F., Hoerrner L. A., Hutchinson N. I., Singer I. I., Donatelli S. A., Weidner J. R., Williams H. R. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest. 1997 Jul 1;100(1):93–106. doi: 10.1172/JCI119526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lark M. W., Williams H., Hoernner L. A., Weidner J., Ayala J. M., Harper C. F., Christen A., Olszewski J., Konteatis Z., Webber R. Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem J. 1995 Apr 1;307(Pt 1):245–252. doi: 10.1042/bj3070245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee E. R., Lamplugh L., Leblond C. P., Mordier S., Magny M. C., Mort J. S. Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate. Anat Rec. 1998 Sep;252(1):117–132. doi: 10.1002/(SICI)1097-0185(199809)252:1<117::AID-AR10>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Liang H., Fesik S. W. Three-dimensional structures of proteins involved in programmed cell death. J Mol Biol. 1997 Dec 5;274(3):291–302. doi: 10.1006/jmbi.1997.1415. [DOI] [PubMed] [Google Scholar]
- Lohmander L. S., Neame P. J., Sandy J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 1993 Sep;36(9):1214–1222. doi: 10.1002/art.1780360906. [DOI] [PubMed] [Google Scholar]
- Martel-Pelletier J., Pelletier J. P. Wanted--the collagenase responsible for the destruction of the collagen network in human cartilage! Br J Rheumatol. 1996 Sep;35(9):818–820. doi: 10.1093/rheumatology/35.9.818. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Nguyen Q., Liu J., Roughley P. J., Mort J. S. Link protein as a monitor in situ of endogenous proteolysis in adult human articular cartilage. Biochem J. 1991 Aug 15;278(Pt 1):143–147. doi: 10.1042/bj2780143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen Q., Murphy G., Hughes C. E., Mort J. S., Roughley P. J. Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem J. 1993 Oct 15;295(Pt 2):595–598. doi: 10.1042/bj2950595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pacella B. L., Jr, Hui K. Y., Haber E., Matsueda G. R. Induction of fibrin-specific antibodies by immunization with synthetic peptides that correspond to amino termini of thrombin cleavage sites. Mol Immunol. 1983 May;20(5):521–527. doi: 10.1016/0161-5890(83)90090-1. [DOI] [PubMed] [Google Scholar]
- Roughley P. J., White R. J., Mort J. S. Presence of pro-forms of decorin and biglycan in human articular cartilage. Biochem J. 1996 Sep 15;318(Pt 3):779–784. doi: 10.1042/bj3180779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saido T. C., Nagao S., Shiramine M., Tsukaguchi M., Sorimachi H., Murofushi H., Tsuchiya T., Ito H., Suzuki K. Autolytic transition of mu-calpain upon activation as resolved by antibodies distinguishing between the pre- and post-autolysis forms. J Biochem. 1992 Jan;111(1):81–86. doi: 10.1093/oxfordjournals.jbchem.a123723. [DOI] [PubMed] [Google Scholar]
- Sandy J. D., Neame P. J., Boynton R. E., Flannery C. R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem. 1991 May 15;266(14):8683–8685. [PubMed] [Google Scholar]
- Shingleton W. D., Hodges D. J., Brick P., Cawston T. E. Collagenase: a key enzyme in collagen turnover. Biochem Cell Biol. 1996;74(6):759–775. doi: 10.1139/o96-083. [DOI] [PubMed] [Google Scholar]
- Singer I. I., Scott S., Kawka D. W., Bayne E. K., Weidner J. R., Williams H. R., Mumford R. A., Lark M. W., McDonnell J., Christen A. J. Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II-induced arthritis. Osteoarthritis Cartilage. 1997 Nov;5(6):407–418. doi: 10.1016/s1063-4584(97)80045-3. [DOI] [PubMed] [Google Scholar]
- Steer M. L. How and where does acute pancreatitis begin? Arch Surg. 1992 Nov;127(11):1350–1353. doi: 10.1001/archsurg.1992.01420110098019. [DOI] [PubMed] [Google Scholar]
- Strickland D. K., Steiner J. P., Migliorini M., Battey F. D. Identification of a monoclonal antibody specific for a neoantigenic determinant on alpha 2-macroglobulin: use for the purification and characterization of binary proteinase-inhibitor complexes. Biochemistry. 1988 Mar 8;27(5):1458–1466. doi: 10.1021/bi00405a010. [DOI] [PubMed] [Google Scholar]
- Sztrolovics R., Alini M., Roughley P. J., Mort J. S. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J. 1997 Aug 15;326(Pt 1):235–241. doi: 10.1042/bj3260235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vankemmelbeke M., Dekeyser P. M., Hollander A. P., Buttle D. J., Demeester J. Characterization of helical cleavages in type II collagen generated by matrixins. Biochem J. 1998 Mar 1;330(Pt 2):633–640. doi: 10.1042/bj3300633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber C., Kitayama J., Springer T. A. Differential regulation of beta 1 and beta 2 integrin avidity by chemoattractants in eosinophils. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10939–10944. doi: 10.1073/pnas.93.20.10939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson I. A., Stanfield R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994 Dec;4(6):857–867. doi: 10.1016/0959-440x(94)90267-4. [DOI] [PubMed] [Google Scholar]
- Young A. C., Valadon P., Casadevall A., Scharff M. D., Sacchettini J. C. The three-dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes. J Mol Biol. 1997 Dec 12;274(4):622–634. doi: 10.1006/jmbi.1997.1407. [DOI] [PubMed] [Google Scholar]
- Zaidi M., Alam A. S., Shankar V. S., Bax B. E., Bax C. M., Moonga B. S., Bevis P. J., Stevens C., Blake D. R., Pazianas M. Cellular biology of bone resorption. Biol Rev Camb Philos Soc. 1993 May;68(2):197–264. doi: 10.1111/j.1469-185x.1993.tb00996.x. [DOI] [PubMed] [Google Scholar]