Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Apr;52(2):68–74. doi: 10.1136/mp.52.2.68

Sensitive fluorescent in situ hybridisation method for the characterisation of breast cancer cells in bone marrow aspirates.

A Forus 1, H K Høifødt 1, G E Overli 1, O Myklebost 1, O Fodstad 1
PMCID: PMC395676  PMID: 10474684

Abstract

AIM: The presence of malignant cells in the blood and bone marrow of patients with cancer at the time of surgery may be indicative of early relapse. In addition to their numbers, the phenotypes of the micrometastatic cells might be essential in determining whether overt metastases will develop. This study aimed to establish a sensitive method for the detection and characterisation of malignant cells present in bone marrow. METHODS: In spiking experiments, SKBR3 cells were mixed with mononuclear cells in known proportions to mimic bone marrow samples with micrometastatic cells. Tumour cells were extracted using SAM-M450 Dynabeads coupled to the MOC-31 anti-epithelial antibody, and were further analysed for amplification of erbB2 and int2 by fluorescent in situ hybridisation (FISH). erbB2 and int2 copy numbers were also determined in 15 primary breast cancers, and bone marrow samples from patients with amplification were analysed for micrometastatic cells by immunomagnetic enrichment and FISH. RESULTS: In model experiments, cells with amplification could be detected in bead selected fractions when ratios of tumour cells (SKBR3) to mononuclear cells were as low as 10:10(7). Among the tumour samples, eight showed increased copy numbers of erbB2 and/or int2, and three of these patients had detectable numbers of tumour cells in their bone marrow: 4000, 540, and 26 tumour cells/10(7) mononuclear cells, respectively. The patient with 540 tumour cells/10(7) mononuclear cells showed high level amplification of erbB2 and suffered from a particularly aggressive disease, whereas the patient with 4000 tumour cells/10(7) mononuclear cells had favourable disease progression. CONCLUSION: These results demonstrate the feasibility and advantage of combining immunomagnetic selection and FISH characterisation of cancer cells in bone marrow samples. It is possible that molecular characterisation of such cells could provide prognostically valuable information.

Full Text

The Full Text of this article is available as a PDF (204.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beiske K., Myklebust A. T., Aamdal S., Langholm R., Jakobsen E., Fodstad O. Detection of bone marrow metastases in small cell lung cancer patients. Comparison of immunologic and morphologic methods. Am J Pathol. 1992 Sep;141(3):531–538. [PMC free article] [PubMed] [Google Scholar]
  2. Berns E. M., Foekens J. A., van Staveren I. L., van Putten W. L., de Koning H. Y., Portengen H., Klijn J. G. Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene. 1995 Jun 14;159(1):11–18. doi: 10.1016/0378-1119(94)00534-y. [DOI] [PubMed] [Google Scholar]
  3. Borg A., Tandon A. K., Sigurdsson H., Clark G. M., Fernö M., Fuqua S. A., Killander D., McGuire W. L. HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res. 1990 Jul 15;50(14):4332–4337. [PubMed] [Google Scholar]
  4. Borgen E., Beiske K., Trachsel S., Nesland J. M., Kvalheim G., Herstad T. K., Schlichting E., Qvist H., Naume B. Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol. 1998 Aug;185(4):427–434. doi: 10.1002/(SICI)1096-9896(199808)185:4<427::AID-PATH127>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  5. Champème M. H., Bièche I., Hacène K., Lidereau R. Int-2/FGF3 amplification is a better independent predictor of relapse than c-myc and c-erbB-2/neu amplifications in primary human breast cancer. Mod Pathol. 1994 Dec;7(9):900–905. [PubMed] [Google Scholar]
  6. Champème M. H., Bièche I., Lizard S., Lidereau R. 11q13 amplification in local recurrence of human primary breast cancer. Genes Chromosomes Cancer. 1995 Feb;12(2):128–133. doi: 10.1002/gcc.2870120207. [DOI] [PubMed] [Google Scholar]
  7. Cote R. J., Rosen P. P., Lesser M. L., Old L. J., Osborne M. P. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol. 1991 Oct;9(10):1749–1756. doi: 10.1200/JCO.1991.9.10.1749. [DOI] [PubMed] [Google Scholar]
  8. Diel I. J., Kaufmann M., Costa S. D., Holle R., von Minckwitz G., Solomayer E. F., Kaul S., Bastert G. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst. 1996 Nov 20;88(22):1652–1658. doi: 10.1093/jnci/88.22.1652. [DOI] [PubMed] [Google Scholar]
  9. Fisher B., Bauer M., Wickerham D. L., Redmond C. K., Fisher E. R., Cruz A. B., Foster R., Gardner B., Lerner H., Margolese R. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer. 1983 Nov 1;52(9):1551–1557. doi: 10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  10. Fisher B., Redmond C., Dimitrov N. V., Bowman D., Legault-Poisson S., Wickerham D. L., Wolmark N., Fisher E. R., Margolese R., Sutherland C. A randomized clinical trial evaluating sequential methotrexate and fluorouracil in the treatment of patients with node-negative breast cancer who have estrogen-receptor-negative tumors. N Engl J Med. 1989 Feb 23;320(8):473–478. doi: 10.1056/NEJM198902233200801. [DOI] [PubMed] [Google Scholar]
  11. Forus A., Berner J. M., Meza-Zepeda L. A., Saeter G., Mischke D., Fodstad O., Myklebost O. Molecular characterization of a novel amplicon at 1q21-q22 frequently observed in human sarcomas. Br J Cancer. 1998 Aug;78(4):495–503. doi: 10.1038/bjc.1998.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henry J. A., Hennessy C., Levett D. L., Lennard T. W., Westley B. R., May F. E. int-2 amplification in breast cancer: association with decreased survival and relationship to amplification of c-erbB-2 and c-myc. Int J Cancer. 1993 Mar 12;53(5):774–780. doi: 10.1002/ijc.2910530512. [DOI] [PubMed] [Google Scholar]
  13. Mansi J. L., Easton D., Berger U., Gazet J. C., Ford H. T., Dearnaley D., Coombes R. C. Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years' follow-up. Eur J Cancer. 1991;27(12):1552–1555. doi: 10.1016/0277-5379(91)90413-8. [DOI] [PubMed] [Google Scholar]
  14. Mueller P., Carroll P., Bowers E., Moore D., 2nd, Cher M., Presti J., Wessman M., Pallavicini M. G. Low frequency epithelial cells in bone marrow aspirates from prostate carcinoma patients are cytogenetically aberrant. Cancer. 1998 Aug 1;83(3):538–546. [PubMed] [Google Scholar]
  15. Myklebust A. T., Beiske K., Pharo A., Davies C. D., Aamdal S., Fodstad O. Selection of anti-SCLC antibodies for diagnosis of bone marrow metastasis. Br J Cancer Suppl. 1991 Jun;14:49–53. [PMC free article] [PubMed] [Google Scholar]
  16. Naume B., Borgen E., Beiske K., Herstad T. K., Ravnås G., Renolen A., Trachsel S., Thrane-Steen K., Funderud S., Kvalheim G. Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother. 1997 Apr;6(2):103–114. doi: 10.1089/scd.1.1997.6.103. [DOI] [PubMed] [Google Scholar]
  17. Naume B., Borgen E., Nesland J. M., Beiske K., Gilen E., Renolen A., Ravnås G., Qvist H., Kåresen R., Kvalheim G. Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int J Cancer. 1998 Nov 23;78(5):556–560. doi: 10.1002/(sici)1097-0215(19981123)78:5<556::aid-ijc5>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  18. Pantel K., Felber E., Schlimok G. Detection and characterization of residual disease in breast cancer. J Hematother. 1994 Winter;3(4):315–322. doi: 10.1089/scd.1.1994.3.315. [DOI] [PubMed] [Google Scholar]
  19. Parkes H. C., Lillycrop K., Howell A., Craig R. K. C-erbB2 mRNA expression in human breast tumours: comparison with c-erbB2 DNA amplification and correlation with prognosis. Br J Cancer. 1990 Jan;61(1):39–45. doi: 10.1038/bjc.1990.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pauletti G., Godolphin W., Press M. F., Slamon D. J. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996 Jul 4;13(1):63–72. [PubMed] [Google Scholar]
  21. Press M. F., Bernstein L., Thomas P. A., Meisner L. F., Zhou J. Y., Ma Y., Hung G., Robinson R. A., Harris C., El-Naggar A. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997 Aug;15(8):2894–2904. doi: 10.1200/JCO.1997.15.8.2894. [DOI] [PubMed] [Google Scholar]
  22. Press M. F., Pike M. C., Chazin V. R., Hung G., Udove J. A., Markowicz M., Danyluk J., Godolphin W., Sliwkowski M., Akita R. Her-2/neu expression in node-negative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res. 1993 Oct 15;53(20):4960–4970. [PubMed] [Google Scholar]
  23. Rye P. D., Høifødt H. K., Overli G. E., Fodstad O. Immunobead filtration: a novel approach for the isolation and propagation of tumor cells. Am J Pathol. 1997 Jan;150(1):99–106. [PMC free article] [PubMed] [Google Scholar]
  24. Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., McGuire W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177–182. doi: 10.1126/science.3798106. [DOI] [PubMed] [Google Scholar]
  25. Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989 May 12;244(4905):707–712. doi: 10.1126/science.2470152. [DOI] [PubMed] [Google Scholar]
  26. Wright C., Angus B., Nicholson S., Sainsbury J. R., Cairns J., Gullick W. J., Kelly P., Harris A. L., Horne C. H. Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res. 1989 Apr 15;49(8):2087–2090. [PubMed] [Google Scholar]
  27. Zojer N., Fiegl M., Angerler J., Müllauer L., Gsur A., Roka S., Pecherstorfer M., Huber H., Drach J. Interphase fluorescence in situ hybridization improves the detection of malignant cells in effusions from breast cancer patients. Br J Cancer. 1997;75(3):403–407. doi: 10.1038/bjc.1997.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Graaf H., Maelandsmo G. M., Ruud P., Forus A., Oyjord T., Fodstad O., Hovig E. Ectopic expression of target genes may represent an inherent limitation of RT-PCR assays used for micrometastasis detection: studies on the epithelial glycoprotein gene EGP-2. Int J Cancer. 1997 Jul 3;72(1):191–196. doi: 10.1002/(sici)1097-0215(19970703)72:1<191::aid-ijc27>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES