Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Apr;52(2):92–96. doi: 10.1136/mp.52.2.92

Expression of the gene encoding the matrix gla protein by mature osteoblasts in human fracture non-unions.

D M Lawton 1, J G Andrew 1, D R Marsh 1, J A Hoyland 1, A J Freemont 1
PMCID: PMC395680  PMID: 10474688

Abstract

BACKGROUND: Osteoblast phenotypic abnormality, namely the expression of collagen type III, has been shown previously in fracture non-union woven bone. AIMS: To investigate osteoblasts from fracture non-unions for evidence of gene expression of non-collagenous bone matrix proteins that have been implicated in mineralisation, namely matrix gla protein (MGP), osteonectin, osteopontin, and osteocalcin. MGP is a consistent component of bone matrix, but there are no reports of osteoblasts in the skeleton expressing the gene for MGP, and the site of synthesis of skeletal MGP (perhaps the liver) has yet to be determined. METHODS: Biopsies from normally healing human fractures and non-unions were examined by means of in situ hybridisation, using 35S labelled probes and autoradiography to disclose levels of gene expression. RESULTS: In normally healing fractures, mature osteoblasts on woven bone were negative for MGP mRNA, but positive for osteonectin, osteopontin, and osteocalcin mRNA molecules. In non-unions, osteoblasts displayed a novel phenotype: they were positive for MGP mRNA, in addition to osteonectin, osteopontin, and osteocalcin mRNA molecules. CONCLUSIONS: Mature osteoblasts in slowly healing fractures have an unusual phenotype: they express the gene encoding MGP, which indicates that control of osteoblast gene expression in non-unions is likely to be abnormal. This might be of importance in the pathogenesis of non-uniting human fractures, and is of current interest given the emerging status of MGP as an inhibitor of mineralisation.

Full Text

The Full Text of this article is available as a PDF (188.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Kelley J. M., Gocayne J. D., Dubnick M., Polymeropoulos M. H., Xiao H., Merril C. R., Wu A., Olde B., Moreno R. F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991 Jun 21;252(5013):1651–1656. doi: 10.1126/science.2047873. [DOI] [PubMed] [Google Scholar]
  2. Andrew J. G., Hoyland J. A., Freemont A. J., Marsh D. R. Platelet-derived growth factor expression in normally healing human fractures. Bone. 1995 Apr;16(4):455–460. doi: 10.1016/8756-3282(95)90191-4. [DOI] [PubMed] [Google Scholar]
  3. Andrew J. G., Hoyland J., Andrew S. M., Freemont A. J., Marsh D. Demonstration of TGF-beta 1 mRNA by in situ hybridization in normal human fracture healing. Calcif Tissue Int. 1993 Feb;52(2):74–78. doi: 10.1007/BF00308311. [DOI] [PubMed] [Google Scholar]
  4. Andrew J. G., Hoyland J., Freemont A. J., Marsh D. Insulinlike growth factor gene expression in human fracture callus. Calcif Tissue Int. 1993 Aug;53(2):97–102. doi: 10.1007/BF01321886. [DOI] [PubMed] [Google Scholar]
  5. Asahina I., Sampath T. K., Hauschka P. V. Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res. 1996 Jan 10;222(1):38–47. doi: 10.1006/excr.1996.0005. [DOI] [PubMed] [Google Scholar]
  6. Barone L. M., Aronow M. A., Tassinari M. S., Conlon D., Canalis E., Stein G. S., Lian J. B. Differential effects of warfarin on mRNA levels of developmentally regulated vitamin K dependent proteins, osteocalcin, and matrix GLA protein in vitro. J Cell Physiol. 1994 Aug;160(2):255–264. doi: 10.1002/jcp.1041600207. [DOI] [PubMed] [Google Scholar]
  7. Barone L. M., Owen T. A., Tassinari M. S., Bortell R., Stein G. S., Lian J. B. Developmental expression and hormonal regulation of the rat matrix Gla protein (MGP) gene in chondrogenesis and osteogenesis. J Cell Biochem. 1991 Aug;46(4):351–365. doi: 10.1002/jcb.240460410. [DOI] [PubMed] [Google Scholar]
  8. Cantor H. The role of Eta-1/osteopontin in the pathogenesis of immunological disorders. Ann N Y Acad Sci. 1995 Apr 21;760:143–150. doi: 10.1111/j.1749-6632.1995.tb44626.x. [DOI] [PubMed] [Google Scholar]
  9. Choong P. F., Martin T. J., Ng K. W. Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts. J Orthop Res. 1993 Sep;11(5):638–647. doi: 10.1002/jor.1100110505. [DOI] [PubMed] [Google Scholar]
  10. Dodds R. A., Connor J. R., James I. E., Rykaczewski E. L., Appelbaum E., Dul E., Gowen M. Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: an in vitro and ex vivo study of remodeling bone. J Bone Miner Res. 1995 Nov;10(11):1666–1680. doi: 10.1002/jbmr.5650101109. [DOI] [PubMed] [Google Scholar]
  11. Hirakawa K., Hirota S., Ikeda T., Yamaguchi A., Takemura T., Nagoshi J., Yoshiki S., Suda T., Kitamura Y., Nomura S. Localization of the mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization. J Bone Miner Res. 1994 Oct;9(10):1551–1557. doi: 10.1002/jbmr.5650091007. [DOI] [PubMed] [Google Scholar]
  12. Hoyland J. A., Thomas J. T., Donn R., Marriott A., Ayad S., Boot-Handford R. P., Grant M. E., Freemont A. J. Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner. 1991 Nov;15(2):151–163. doi: 10.1016/0169-6009(91)90005-k. [DOI] [PubMed] [Google Scholar]
  13. Hughes S. S., Hicks D. G., O'Keefe R. J., Hurwitz S. R., Crabb I. D., Krasinskas A. M., Loveys L., Puzas J. E., Rosier R. N. Shared phenotypic expression of osteoblasts and chondrocytes in fracture callus. J Bone Miner Res. 1995 Apr;10(4):533–544. doi: 10.1002/jbmr.5650100405. [DOI] [PubMed] [Google Scholar]
  14. Jingushi S., Joyce M. E., Bolander M. E. Genetic expression of extracellular matrix proteins correlates with histologic changes during fracture repair. J Bone Miner Res. 1992 Sep;7(9):1045–1055. doi: 10.1002/jbmr.5650070907. [DOI] [PubMed] [Google Scholar]
  15. Kiefer M. C., Bauer D. M., Barr P. J. The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Res. 1989 Apr 25;17(8):3306–3306. doi: 10.1093/nar/17.8.3306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kiefer M. C., Bauer D. M., Young D., Hermsen K. M., Masiarz F. R., Barr P. J. The cDNA and derived amino acid sequences for human and bovine matrix Gla protein. Nucleic Acids Res. 1988 Jun 10;16(11):5213–5213. doi: 10.1093/nar/16.11.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kiefer M. C., Saphire A. C., Bauer D. M., Barr P. J. The cDNA and derived amino acid sequences of human and bovine bone Gla protein. Nucleic Acids Res. 1990 Apr 11;18(7):1909–1909. doi: 10.1093/nar/18.7.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lawton D. M., Andrew J. G., Marsh D. R., Hoyland J. A., Freemont A. J. Mature osteoblasts in human non-union fractures express collagen type III. Mol Pathol. 1997 Aug;50(4):194–197. doi: 10.1136/mp.50.4.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luo G., D'Souza R., Hogue D., Karsenty G. The matrix Gla protein gene is a marker of the chondrogenesis cell lineage during mouse development. J Bone Miner Res. 1995 Feb;10(2):325–334. doi: 10.1002/jbmr.5650100221. [DOI] [PubMed] [Google Scholar]
  20. Luo G., Ducy P., McKee M. D., Pinero G. J., Loyer E., Behringer R. R., Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997 Mar 6;386(6620):78–81. doi: 10.1038/386078a0. [DOI] [PubMed] [Google Scholar]
  21. Murphy-Ullrich J. E., Lane T. F., Pallero M. A., Sage E. H. SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J Cell Biochem. 1995 Feb;57(2):341–350. doi: 10.1002/jcb.240570218. [DOI] [PubMed] [Google Scholar]
  22. Owen T. A., Aronow M. S., Barone L. M., Bettencourt B., Stein G. S., Lian J. B. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology. 1991 Mar;128(3):1496–1504. doi: 10.1210/endo-128-3-1496. [DOI] [PubMed] [Google Scholar]
  23. Polymeropoulos M. H., Xiao H., Sikela J. M., Adams M., Venter J. C., Merril C. R. Chromosomal distribution of 320 genes from a brain cDNA library. Nat Genet. 1993 Aug;4(4):381–386. doi: 10.1038/ng0893-381. [DOI] [PubMed] [Google Scholar]
  24. Rice J. S., Williamson M. K., Price P. A. Isolation and sequence of the vitamin K-dependent matrix Gla protein from the calcified cartilage of the soupfin shark. J Bone Miner Res. 1994 Apr;9(4):567–576. doi: 10.1002/jbmr.5650090417. [DOI] [PubMed] [Google Scholar]
  25. Roach H. I. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int. 1994 Jun;18(6):617–628. doi: 10.1006/cbir.1994.1088. [DOI] [PubMed] [Google Scholar]
  26. Sohma Y., Suzuki T., Sasano H., Nagura H., Nose M., Yamamoto T. Expression of mRNA for matrix gamma-carboxyglutamic acid protein during progression of atherosclerosis in aortae of Watanabe heritable hyperlipidemic rabbits. J Biochem. 1994 Oct;116(4):747–751. doi: 10.1093/oxfordjournals.jbchem.a124591. [DOI] [PubMed] [Google Scholar]
  27. St-Arnaud R., Prud'homme J., Leung-Hagesteijn C., Dedhar S. Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J Cell Biol. 1995 Dec;131(5):1351–1359. doi: 10.1083/jcb.131.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strandjord T. P., Sage E. H., Clark J. G. SPARC participates in the branching morphogenesis of developing fetal rat lung. Am J Respir Cell Mol Biol. 1995 Sep;13(3):279–287. doi: 10.1165/ajrcmb.13.3.7654384. [DOI] [PubMed] [Google Scholar]
  29. Tezuka K., Sato T., Kamioka H., Nijweide P. J., Tanaka K., Matsuo T., Ohta M., Kurihara N., Hakeda Y., Kumegawa M. Identification of osteopontin in isolated rabbit osteoclasts. Biochem Biophys Res Commun. 1992 Jul 31;186(2):911–917. doi: 10.1016/0006-291x(92)90832-6. [DOI] [PubMed] [Google Scholar]
  30. Xuan J. W., Hota C., Shigeyama Y., D'Errico J. A., Somerman M. J., Chambers A. F. Site-directed mutagenesis of the arginine-glycine-aspartic acid sequence in osteopontin destroys cell adhesion and migration functions. J Cell Biochem. 1995 Apr;57(4):680–690. doi: 10.1002/jcb.240570413. [DOI] [PubMed] [Google Scholar]
  31. Zhou H., Hammonds R. G., Jr, Findlay D. M., Fuller P. J., Martin T. J., Ng K. W. Retinoic acid modulation of mRNA levels in malignant, nontransformed, and immortalized osteoblasts. J Bone Miner Res. 1991 Jul;6(7):767–777. doi: 10.1002/jbmr.5650060715. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES