Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Apr;52(2):97–103. doi: 10.1136/mp.52.2.97

Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases.

D P Hayes 1, A A Brink 1, M B Vervoort 1, J M Middeldorp 1, C J Meijer 1, A J van den Brule 1
PMCID: PMC395681  PMID: 10474689

Abstract

AIMS: To examine the expression of Epstein-Barr virus (EBV) transcripts encoding proteins homologous to important human proteins in diverse EBV associated diseases. The proteins were: BHRF1 (homologous to Bcl-2), BDLF2 (homologous to cyclin B1), BARF1 (homologous to intercellular cell adhesion molecule 1 (ICAM-1)), and BCRF1 (viral IL-10 (vIL-10), homologous to human IL-10 (hIL-10)). METHODS: Six cases of oral hairy leukoplakia, seven of Hodgkin's disease, eight of T cell non-Hodgkin's lymphoma, and nine of nasopharyngeal carcinoma were examined at the mRNA level using either the reverse transcriptase polymerase chain reaction (RT-PCR) or nucleic acid sequence based amplification (NASBA). Different primer sets allowed the differentiation by RT-PCR of the latent (Cp/Wp driven) and lytic (Hp driven) transcripts of BHRF1. A specific NASBA reaction was developed for the detection of vIL-10 and BDLF2 transcripts and this was tested initially on cell lines and later on clinical samples. RESULTS: vIL-10 and BDLF2 were expressed almost exclusively in oral hairy leukoplakia, whereas BARF1 transcripts were present in all cases of nasopharyngeal carcinoma, with weak expression in one oral hairy leukoplakia and isolated cases of lymphoid malignancy. Both BHRF1 transcripts were detected across the range of tissues tested, but strong expression of lytic BHRF1 transcripts was seen only in oral hairy leukoplakia. CONCLUSIONS: vIL-10 and BDLF2 transcripts are expressed during productive EBV infection and are unlikely to be important in the pathogenesis of EBV associated malignancies. BARF1 appears to be expressed preferentially during viral latency and is more closely associated with malignant rather than benign epithelial proliferations. The alternative transcripts derived from the BHRF1 open reading frame may have very different roles during latent or productive infection.

Full Text

The Full Text of this article is available as a PDF (182.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin P. J., Flemington E., Yandava C. N., Strominger J. L., Speck S. H. Complex transcription of the Epstein-Barr virus BamHI fragment H rightward open reading frame 1 (BHRF1) in latently and lytically infected B lymphocytes. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3678–3682. doi: 10.1073/pnas.85.11.3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  3. Bijl J., van Oostveen J. W., Kreike M., Rieger E., van der Raaij-Helmer L. M., Walboomers J. M., Corte G., Boncinelli E., van den Brule A. J., Meijer C. J. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood. 1996 Mar 1;87(5):1737–1745. [PubMed] [Google Scholar]
  4. Brehmer-Andersson E., Lucht E., Lindskog S., Ekman M., Biberfeld P. Oral hairy leukoplakia: pathogenetic aspects and significance of the lesion. Acta Derm Venereol. 1994 Mar;74(2):81–89. doi: 10.2340/00015555748189. [DOI] [PubMed] [Google Scholar]
  5. Brink A. A., Oudejans J. J., Jiwa M., Walboomers J. M., Meijer C. J., van den Brule A. J. Multiprimed cDNA synthesis followed by PCR is the most suitable method for Epstein-Barr virus transcript analysis in small lymphoma biopsies. Mol Cell Probes. 1997 Feb;11(1):39–47. doi: 10.1006/mcpr.1996.0074. [DOI] [PubMed] [Google Scholar]
  6. Brink A. A., Vervoort M. B., Middeldorp J. M., Meijer C. J., van den Brule A. J. Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts, and its comparison with reverse transcriptase PCR. J Clin Microbiol. 1998 Nov;36(11):3164–3169. doi: 10.1128/jcm.36.11.3164-3169.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brooks L. A., Lear A. L., Young L. S., Rickinson A. B. Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol. 1993 Jun;67(6):3182–3190. doi: 10.1128/jvi.67.6.3182-3190.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brooks L., Yao Q. Y., Rickinson A. B., Young L. S. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol. 1992 May;66(5):2689–2697. doi: 10.1128/jvi.66.5.2689-2697.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cochet C., Martel-Renoir D., Grunewald V., Bosq J., Cochet G., Schwaab G., Bernaudin J. F., Joab I. Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology. 1993 Nov;197(1):358–365. doi: 10.1006/viro.1993.1597. [DOI] [PubMed] [Google Scholar]
  10. Compton J. Nucleic acid sequence-based amplification. Nature. 1991 Mar 7;350(6313):91–92. doi: 10.1038/350091a0. [DOI] [PubMed] [Google Scholar]
  11. Dawson C. W., Eliopoulos A. G., Dawson J., Young L. S. BHRF1, a viral homologue of the Bcl-2 oncogene, disturbs epithelial cell differentiation. Oncogene. 1995 Jan 5;10(1):69–77. [PubMed] [Google Scholar]
  12. Deacon E. M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A. B., Young L. S. Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993 Feb 1;177(2):339–349. doi: 10.1084/jem.177.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fåhraeus R., Fu H. L., Ernberg I., Finke J., Rowe M., Klein G., Falk K., Nilsson E., Yadav M., Busson P. Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer. 1988 Sep 15;42(3):329–338. doi: 10.1002/ijc.2910420305. [DOI] [PubMed] [Google Scholar]
  14. Greenspan J. S., Greenspan D., Lennette E. T., Abrams D. I., Conant M. A., Petersen V., Freese U. K. Replication of Epstein-Barr virus within the epithelial cells of oral "hairy" leukoplakia, an AIDS-associated lesion. N Engl J Med. 1985 Dec 19;313(25):1564–1571. doi: 10.1056/NEJM198512193132502. [DOI] [PubMed] [Google Scholar]
  15. Henderson S., Huen D., Rowe M., Dawson C., Johnson G., Rickinson A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8479–8483. doi: 10.1073/pnas.90.18.8479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henke W., Herdel K., Jung K., Schnorr D., Loening S. A. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 1997 Oct 1;25(19):3957–3958. doi: 10.1093/nar/25.19.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudson G. S., Bankier A. T., Satchwell S. C., Barrell B. G. The short unique region of the B95-8 Epstein-Barr virus genome. Virology. 1985 Nov;147(1):81–98. doi: 10.1016/0042-6822(85)90229-6. [DOI] [PubMed] [Google Scholar]
  18. Jiwa N. M., Kanavaros P., De Bruin P. C., van der Valk P., Horstman A., Vos W., Mullink H., Walboomers J. M., Meijer C. J. Presence of Epstein-Barr virus harbouring small and intermediate-sized cells in Hodgkin's disease. Is there a relationship with Reed-Sternberg cells? J Pathol. 1993 Jun;170(2):129–136. doi: 10.1002/path.1711700206. [DOI] [PubMed] [Google Scholar]
  19. Kievits T., van Gemen B., van Strijp D., Schukkink R., Dircks M., Adriaanse H., Malek L., Sooknanan R., Lens P. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991 Dec;35(3):273–286. doi: 10.1016/0166-0934(91)90069-c. [DOI] [PubMed] [Google Scholar]
  20. Lau R., Packham G., Farrell P. J. Differential splicing of Epstein-Barr virus immediate-early RNA. J Virol. 1992 Oct;66(10):6233–6236. doi: 10.1128/jvi.66.10.6233-6236.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyazaki I., Cheung R. K., Dosch H. M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med. 1993 Aug 1;178(2):439–447. doi: 10.1084/jem.178.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moore K. W., Rousset F., Banchereau J. Evolving principles in immunopathology: interleukin 10 and its relationship to Epstein-Barr virus protein BCRF1. Springer Semin Immunopathol. 1991;13(2):157–166. doi: 10.1007/BF00201466. [DOI] [PubMed] [Google Scholar]
  23. Morré S. A., Sillekens P., Jacobs M. V., van Aarle P., de Blok S., van Gemen B., Walboomers J. M., Meijer C. J., van den Brule A. J. RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples. J Clin Microbiol. 1996 Dec;34(12):3108–3114. doi: 10.1128/jcm.34.12.3108-3114.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murray P. G., Swinnen L. J., Constandinou C. M., Pyle J. M., Carr T. J., Hardwick J. M., Ambinder R. F. BCL-2 but not its Epstein-Barr virus-encoded homologue, BHRF1, is commonly expressed in posttransplantation lymphoproliferative disorders. Blood. 1996 Jan 15;87(2):706–711. [PubMed] [Google Scholar]
  25. Oudejans J. J., van den Brule A. J., Jiwa N. M., de Bruin P. C., Ossenkoppele G. J., van der Valk P., Walboomers J. M., Meijer C. J. BHRF1, the Epstein-Barr virus (EBV) homologue of the BCL-2 protooncogene, is transcribed in EBV-associated B-cell lymphomas and in reactive lymphocytes. Blood. 1995 Sep 1;86(5):1893–1902. [PubMed] [Google Scholar]
  26. Qu L., Rowe D. T. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol. 1992 Jun;66(6):3715–3724. doi: 10.1128/jvi.66.6.3715-3724.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rooney C. M., Rowe D. T., Ragot T., Farrell P. J. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol. 1989 Jul;63(7):3109–3116. doi: 10.1128/jvi.63.7.3109-3116.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rousset F., Garcia E., Defrance T., Péronne C., Vezzio N., Hsu D. H., Kastelein R., Moore K. W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1890–1893. doi: 10.1073/pnas.89.5.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sbih-Lammali F., Djennaoui D., Belaoui H., Bouguermouh A., Decaussin G., Ooka T. Transcriptional expression of Epstein-Barr virus genes and proto-oncogenes in north African nasopharyngeal carcinoma. J Med Virol. 1996 May;49(1):7–14. doi: 10.1002/(SICI)1096-9071(199605)49:1<7::AID-JMV2>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  30. Strockbine L. D., Cohen J. I., Farrah T., Lyman S. D., Wagener F., DuBose R. F., Armitage R. J., Spriggs M. K. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol. 1998 May;72(5):4015–4021. doi: 10.1128/jvi.72.5.4015-4021.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vieira P., de Waal-Malefyt R., Dang M. N., Johnson K. E., Kastelein R., Fiorentino D. F., deVries J. E., Roncarolo M. G., Mosmann T. R., Moore K. W. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1172–1176. doi: 10.1073/pnas.88.4.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wei M. X., Moulin J. C., Decaussin G., Berger F., Ooka T. Expression and tumorigenicity of the Epstein-Barr virus BARF1 gene in human Louckes B-lymphocyte cell line. Cancer Res. 1994 Apr 1;54(7):1843–1848. [PubMed] [Google Scholar]
  33. Wei M. X., Ooka T. A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J. 1989 Oct;8(10):2897–2903. doi: 10.1002/j.1460-2075.1989.tb08438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wei M. X., de Turenne-Tessier M., Decaussin G., Benet G., Ooka T. Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein-Barr virus. Oncogene. 1997 Jun 26;14(25):3073–3081. doi: 10.1038/sj.onc.1201128. [DOI] [PubMed] [Google Scholar]
  35. van Gorp J., Brink A., Oudejans J. J., van den Brule A. J., van den Tweel J. G., Jiwa N. M., de Bruin P. C., Meijer C. J. Expression of Epstein-Barr virus encoded latent genes in nasal T cell lymphomas. J Clin Pathol. 1996 Jan;49(1):72–76. doi: 10.1136/jcp.49.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES