Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Jun;52(3):131–134. doi: 10.1136/mp.52.3.131

Association of p53 genomic instability with the glutathione S-transferase null genotype in gastric cancer in the Portuguese population.

A R Conde 1, G Martins 1, C Saraiva 1, J Rueff 1, C Monteiro 1
PMCID: PMC395686  PMID: 10621833

Abstract

AIMS: p53 gene mutations are the most common genetic changes known to occur in human cancer. In previous studies, the presence of alterations to the p53 gene has been linked to the null phenotype of the glutathione S-transferase mu gene (GSTM1). GSTM1 appears to be part of a protective mechanism against the development of cancers in which environmental chemical carcinogens are involved. To screen for such an association in stomach cancer, p53 allelic loss and genomic instability and GSTM1 genotypes were investigated in gastric tumour DNA samples from 113 patients. METHODS: The polymerase chain (PCR) reaction was used to amplify a (CA) repeat array in the p53 locus; electrophoresis, genotyping, and allele quantification were performed using an automated DNA sequencer and Genescan software. The presence of the GSTM1 gene was determined by means of a differential PCR in which multiple genes were co-amplified in the same reaction tube. RESULTS: Loss of heterozygosity (LOH) of the p53 gene was found in 36 of 87 informative cases and genomic instability was present in eight of 113 cases. Further analysis into histological subtypes and sites of tumours did not show any positive association with p53 loss. An association between the presence of LOH and the GSTM1 null genotype was not seen; however, all the samples with genomic instability of the p53 gene (eight of 113) also showed a GSTM1 null genotype. CONCLUSION: This study does not support the hypothesis of an association between LOH in the p53 gene and the GSTM1 null genotype, but suggests that the GSTM1 null genotype might influence p53 genomic instability.

Full Text

The Full Text of this article is available as a PDF (171.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brockmöller J., Kaiser R., Kerb R., Cascorbi I., Jaeger V., Roots I. Polymorphic enzymes of xenobiotic metabolism as modulators of acquired P53 mutations in bladder cancer. Pharmacogenetics. 1996 Dec;6(6):535–545. doi: 10.1097/00008571-199612000-00007. [DOI] [PubMed] [Google Scholar]
  2. Buonsanti G., Calistri D., Padovan L., Luinetti O., Fiocca R., Solcia E., Ranzani G. N. Microsatellite instability in intestinal- and diffuse-type gastric carcinoma. J Pathol. 1997 Jun;182(2):167–173. doi: 10.1002/(SICI)1096-9896(199706)182:2<167::AID-PATH830>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  3. Cawkwell L., Bell S. M., Lewis F. A., Dixon M. F., Taylor G. R., Quirke P. Rapid detection of allele loss in colorectal tumours using microsatellites and fluorescent DNA technology. Br J Cancer. 1993 Jun;67(6):1262–1267. doi: 10.1038/bjc.1993.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Comstock K. E., Sanderson B. J., Claflin G., Henner W. D. GST1 gene deletion determined by polymerase chain reaction. Nucleic Acids Res. 1990 Jun 25;18(12):3670–3670. doi: 10.1093/nar/18.12.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Esteller M., García A., Martínez-Palones J. M., Xercavins J., Reventós J. Susceptibility to endometrial cancer: influence of allelism at p53, glutathione S-transferase (GSTM1 and GSTT1) and cytochrome P-450 (CYP1A1) loci. Br J Cancer. 1997;75(9):1385–1388. doi: 10.1038/bjc.1997.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamamoto T., Yokozaki H., Semba S., Yasui W., Yunotani S., Miyazaki K., Tahara E. Altered microsatellites in incomplete-type intestinal metaplasia adjacent to primary gastric cancers. J Clin Pathol. 1997 Oct;50(10):841–846. doi: 10.1136/jcp.50.10.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Impraim C. C., Saiki R. K., Erlich H. A., Teplitz R. L. Analysis of DNA extracted from formalin-fixed, paraffin-embedded tissues by enzymatic amplification and hybridization with sequence-specific oligonucleotides. Biochem Biophys Res Commun. 1987 Feb 13;142(3):710–716. doi: 10.1016/0006-291x(87)91472-0. [DOI] [PubMed] [Google Scholar]
  8. Jones M. H., Nakamura Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer. 1992 Jul;5(1):89–90. doi: 10.1002/gcc.2870050113. [DOI] [PubMed] [Google Scholar]
  9. Kawajiri K., Eguchi H., Nakachi K., Sekiya T., Yamamoto M. Association of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res. 1996 Jan 1;56(1):72–76. [PubMed] [Google Scholar]
  10. LAUREN P. THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC CARCINOMA: DIFFUSE AND SO-CALLED INTESTINAL-TYPE CARCINOMA. AN ATTEMPT AT A HISTO-CLINICAL CLASSIFICATION. Acta Pathol Microbiol Scand. 1965;64:31–49. doi: 10.1111/apm.1965.64.1.31. [DOI] [PubMed] [Google Scholar]
  11. Lazarus P., Sheikh S. N., Ren Q., Schantz S. P., Stern J. C., Richie J. P., Jr, Park J. Y. p53, but not p16 mutations in oral squamous cell carcinomas are associated with specific CYP1A1 and GSTM1 polymorphic genotypes and patient tobacco use. Carcinogenesis. 1998 Mar;19(3):509–514. doi: 10.1093/carcin/19.3.509. [DOI] [PubMed] [Google Scholar]
  12. Levine A. J., Momand J., Finlay C. A. The p53 tumour suppressor gene. Nature. 1991 Jun 6;351(6326):453–456. doi: 10.1038/351453a0. [DOI] [PubMed] [Google Scholar]
  13. Lim B. H., Soong R., Grieu F., Robbins P. D., House A. K., Iacopetta B. J. p53 accumulation and mutation are prognostic indicators of poor survival in human gastric carcinoma. Int J Cancer. 1996 Jun 21;69(3):200–204. doi: 10.1002/(SICI)1097-0215(19960621)69:3<200::AID-IJC9>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  14. Lin J. T., Wu M. S., Shun C. T., Lee W. J., Sheu J. C., Wang T. H. Occurrence of microsatellite instability in gastric carcinoma is associated with enhanced expression of erbB-2 oncoprotein. Cancer Res. 1995 Apr 1;55(7):1428–1430. [PubMed] [Google Scholar]
  15. Luinetti O., Fiocca R., Villani L., Alberizzi P., Ranzani G. N., Solcia E. Genetic pattern, histological structure, and cellular phenotype in early and advanced gastric cancers: evidence for structure-related genetic subsets and for loss of glandular structure during progression of some tumors. Hum Pathol. 1998 Jul;29(7):702–709. doi: 10.1016/s0046-8177(98)90279-9. [DOI] [PubMed] [Google Scholar]
  16. Marsh D. J., Zheng Z., Zedenius J., Kremer H., Padberg G. W., Larsson C., Longy M., Eng C. Differential loss of heterozygosity in the region of the Cowden locus within 10q22-23 in follicular thyroid adenomas and carcinomas. Cancer Res. 1997 Feb 1;57(3):500–503. [PubMed] [Google Scholar]
  17. McGlynn K. A., Rosvold E. A., Lustbader E. D., Hu Y., Clapper M. L., Zhou T., Wild C. P., Xia X. L., Baffoe-Bonnie A., Ofori-Adjei D. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2384–2387. doi: 10.1073/pnas.92.6.2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mikelsaar A. V., Tasa G., Pärlist P., Uusküla M. Human glutathione S-transferase GSTM1 genetic polymorphism in Estonia. Hum Hered. 1994 Sep-Oct;44(5):248–251. doi: 10.1159/000154225. [DOI] [PubMed] [Google Scholar]
  19. Ohshima S., Xu Y. p53 gene mutations, and CYP1A1 and GSTM1 genotypes in pulmonary squamous cell carcinomas. Mol Pathol. 1997 Apr;50(2):108–110. doi: 10.1136/mp.50.2.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perrett C. W., Clayton R. N., Pistorello M., Boscaro M., Scanarini M., Bates A. S., Buckley N., Jones P., Fryer A. A., Gilford J. GSTM1 and CYP2D6 genotype frequencies in patients with pituitary tumours: effects on P53, ras and gsp. Carcinogenesis. 1995 Jul;16(7):1643–1645. doi: 10.1093/carcin/16.7.1643. [DOI] [PubMed] [Google Scholar]
  21. Ponder B. Cancer. Gene losses in human tumours. Nature. 1988 Sep 29;335(6189):400–402. doi: 10.1038/335400a0. [DOI] [PubMed] [Google Scholar]
  22. Renault B., Calistri D., Buonsanti G., Nanni O., Amadori D., Ranzani G. N. Microsatellite instability and mutations of p53 and TGF-beta RII genes in gastric cancer. Hum Genet. 1996 Nov;98(5):601–607. doi: 10.1007/s004390050267. [DOI] [PubMed] [Google Scholar]
  23. Rhyu M. G. Genetic events underlying morphological complexity of gastric carcinoma. J Korean Med Sci. 1998 Aug;13(4):339–349. doi: 10.3346/jkms.1998.13.4.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sarhanis P., Redman C., Perrett C., Brannigan K., Clayton R. N., Hand P., Musgrove C., Suarez V., Jones P., Fryer A. A. Epithelial ovarian cancer: influence of polymorphism at the glutathione S-transferase GSTM1 and GSTT1 loci on p53 expression. Br J Cancer. 1996 Dec;74(11):1757–1761. doi: 10.1038/bjc.1996.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seruca R., Santos N. R., David L., Constância M., Barroca H., Carneiro F., Seixas M., Peltomäki P., Lothe R., Sobrinho-Simões M. Sporadic gastric carcinomas with microsatellite instability display a particular clinicopathologic profile. Int J Cancer. 1995 Feb 20;64(1):32–36. doi: 10.1002/ijc.2910640108. [DOI] [PubMed] [Google Scholar]
  26. Shibata D., Peinado M. A., Ionov Y., Malkhosyan S., Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994 Mar;6(3):273–281. doi: 10.1038/ng0394-273. [DOI] [PubMed] [Google Scholar]
  27. Stemmermann G., Heffelfinger S. C., Noffsinger A., Hui Y. Z., Miller M. A., Fenoglio-Preiser C. M. The molecular biology of esophageal and gastric cancer and their precursors: oncogenes, tumor suppressor genes, and growth factors. Hum Pathol. 1994 Oct;25(10):968–981. doi: 10.1016/0046-8177(94)90056-6. [DOI] [PubMed] [Google Scholar]
  28. Strickler J. G., Zheng J., Shu Q., Burgart L. J., Alberts S. R., Shibata D. p53 mutations and microsatellite instability in sporadic gastric cancer: when guardians fail. Cancer Res. 1994 Sep 1;54(17):4750–4755. [PubMed] [Google Scholar]
  29. Wirtz H. C., Müller W., Noguchi T., Scheven M., Rüschoff J., Hommel G., Gabbert H. E. Prognostic value and clinicopathological profile of microsatellite instability in gastric cancer. Clin Cancer Res. 1998 Jul;4(7):1749–1754. [PubMed] [Google Scholar]
  30. Wooster R., Cleton-Jansen A. M., Collins N., Mangion J., Cornelis R. S., Cooper C. S., Gusterson B. A., Ponder B. A., von Deimling A., Wiestler O. D. Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet. 1994 Feb;6(2):152–156. doi: 10.1038/ng0294-152. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES