Abstract
BACKGROUND: The process of metastasis is complex, involving many interrelated stages, including proteolysis. Proteolysis occurs in both normal and pathological processes and involves the breakdown of the extracellular matrix and/or basement membrane by proteolytic enzymes. Normally, proteolysis is tightly controlled by specific endogenous proteinase inhibitors. However, in certain disease processes, including cancer, controlled but abnormal proteolysis seems to occur. Proteinases involved in tumour invasion and metastasis include the matrix metalloproteinases (MMPs) and the serine proteinases. AIMS: To gain a greater understanding of the proteolytic process occurring in colorectal cancer and to determine which, if any, proteinases are upregulated. METHODS: The synthesis of proteinases and their inhibitors was compared in paired tumour and normal tissue samples from patients with colorectal cancer (n = 24). Substrate zymography was used to determine the synthesis of MMPs (MMP-2, MMP-9, and MMP-3) and the plasminogen activators (urokinase and tissue-type plasminogen activators); enzyme linked immunosorbent assays (ELISAs) were used to determine the concentrations of MMP-1 and tissue inhibitor of metalloproteinase 1 (TIMP-1); and the technique of quenched fluorescence substrate hydrolysis was performed to determine the total MMP activity of each sample. RESULTS: In general, both proteinase and inhibitor expression was greater in the tumour tissue when compared with the corresponding normal colorectal tissue. The amount of active MMPs was greater in the tumour tissue. CONCLUSIONS: The increased extracellular proteinase concentrations and activity may encourage tumour invasion and metastasis. This study points to MMP-9 as being of potential major importance in the development of this form of cancer.
Full Text
The Full Text of this article is available as a PDF (197.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baici A., Gyger-Marazzi M., Sträuli P. Extracellular cysteine proteinase and collagenase activities as a consequence of tumor-host interaction in the rabbit V2 carcinoma. Invasion Metastasis. 1984;4(1):13–27. [PubMed] [Google Scholar]
- Brown C. J., Rahman S., Morton A. C., Beauchamp C. L., Bramwell H., Buttle D. J. Inhibitors of collagenase but not of gelatinase reduce cartilage explant proteoglycan breakdown despite only low levels of matrix metalloproteinase activity. Clin Mol Pathol. 1996 Dec;49(6):M331–M339. doi: 10.1136/mp.49.6.m331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buø L., Meling G. I., Karlsrud T. S., Johansen H. T., Aasen A. O. Antigen levels of urokinase plasminogen activator and its receptor at the tumor-host interface of colorectal adenocarcinomas are related to tumor aggressiveness. Hum Pathol. 1995 Oct;26(10):1133–1138. doi: 10.1016/0046-8177(95)90276-7. [DOI] [PubMed] [Google Scholar]
- Duffy M. J., O'Grady P., Devaney D., O'Siorain L., Fennelly J. J., Lijnen H. R. Tissue-type plasminogen activator, a new prognostic marker in breast cancer. Cancer Res. 1988 Mar 1;48(5):1348–1349. [PubMed] [Google Scholar]
- Gallegos N. C., Smales C., Savage F. J., Hembry R. M., Boulos P. B. The distribution of matrix metalloproteinases and tissue inhibitor of metalloproteinases in colorectal cancer. Surg Oncol. 1995;4(2):111–119. doi: 10.1016/s0960-7404(10)80015-5. [DOI] [PubMed] [Google Scholar]
- Gelister J. S., Mahmoud M., Lewin M. R., Gaffney P. J., Boulos P. B. Plasminogen activators in human colorectal neoplasia. Br Med J (Clin Res Ed) 1986 Sep 20;293(6549):728–731. doi: 10.1136/bmj.293.6549.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grøndahl-Hansen J., Ralfkiaer E., Kirkeby L. T., Kristensen P., Lund L. R., Danø K. Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am J Pathol. 1991 Jan;138(1):111–117. [PMC free article] [PubMed] [Google Scholar]
- Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
- Hewitt R. E., Leach I. H., Powe D. G., Clark I. M., Cawston T. E., Turner D. R. Distribution of collagenase and tissue inhibitor of metalloproteinases (TIMP) in colorectal tumours. Int J Cancer. 1991 Nov 11;49(5):666–672. doi: 10.1002/ijc.2910490507. [DOI] [PubMed] [Google Scholar]
- Knight C. G., Willenbrock F., Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992 Jan 27;296(3):263–266. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
- Kwaan H. C. The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev. 1992 Nov;11(3-4):291–311. doi: 10.1007/BF01307184. [DOI] [PubMed] [Google Scholar]
- Levy A. T., Cioce V., Sobel M. E., Garbisa S., Grigioni W. F., Liotta L. A., Stetler-Stevenson W. G. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res. 1991 Jan 1;51(1):439–444. [PubMed] [Google Scholar]
- Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
- Matrisian L. M., Wright J., Newell K., Witty J. P. Matrix-degrading metalloproteinases in tumor progression. Princess Takamatsu Symp. 1994;24:152–161. [PubMed] [Google Scholar]
- Murashige M., Miyahara M., Shiraishi N., Saito T., Kohno K., Kobayashi M. Enhanced expression of tissue inhibitors of metalloproteinases in human colorectal tumors. Jpn J Clin Oncol. 1996 Oct;26(5):303–309. doi: 10.1093/oxfordjournals.jjco.a023237. [DOI] [PubMed] [Google Scholar]
- Murray G. I., Duncan M. E., O'Neil P., Melvin W. T., Fothergill J. E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996 Apr;2(4):461–462. doi: 10.1038/nm0496–461. [DOI] [PubMed] [Google Scholar]
- Poulsom R., Pignatelli M., Stetler-Stevenson W. G., Liotta L. A., Wright P. A., Jeffery R. E., Longcroft J. M., Rogers L., Stamp G. W. Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol. 1992 Aug;141(2):389–396. [PMC free article] [PubMed] [Google Scholar]
- Pyke C., Kristensen P., Ralfkiaer E., Grøndahl-Hansen J., Eriksen J., Blasi F., Danø K. Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Pathol. 1991 May;138(5):1059–1067. [PMC free article] [PubMed] [Google Scholar]
- Ring P., Johansson K., Höyhtyä M., Rubin K., Lindmark G. Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer--a predictor of tumour stage. Br J Cancer. 1997;76(6):805–811. doi: 10.1038/bjc.1997.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seftor R. E. Electrophoretic analysis of proteins associated with tumor cell invasion. Electrophoresis. 1994 Mar-Apr;15(3-4):454–462. doi: 10.1002/elps.1150150162. [DOI] [PubMed] [Google Scholar]
- Stetler-Stevenson W. G., Liotta L. A., Kleiner D. E., Jr Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 1993 Dec;7(15):1434–1441. doi: 10.1096/fasebj.7.15.8262328. [DOI] [PubMed] [Google Scholar]
- Thorpe S. M., Rochefort H., Garcia M., Freiss G., Christensen I. J., Khalaf S., Paolucci F., Pau B., Rasmussen B. B., Rose C. Association between high concentrations of Mr 52,000 cathepsin D and poor prognosis in primary human breast cancer. Cancer Res. 1989 Nov 1;49(21):6008–6014. [PubMed] [Google Scholar]
- Woessner J. F., Jr The family of matrix metalloproteinases. Ann N Y Acad Sci. 1994 Sep 6;732:11–21. doi: 10.1111/j.1749-6632.1994.tb24720.x. [DOI] [PubMed] [Google Scholar]
- Yoshimoto M., Itoh F., Yamamoto H., Hinoda Y., Imai K., Yachi A. Expression of MMP-7(PUMP-1) mRNA in human colorectal cancers. Int J Cancer. 1993 Jun 19;54(4):614–618. doi: 10.1002/ijc.2910540415. [DOI] [PubMed] [Google Scholar]
- Yu A. E., Hewitt R. E., Connor E. W., Stetler-Stevenson W. G. Matrix metalloproteinases. Novel targets for directed cancer therapy. Drugs Aging. 1997 Sep;11(3):229–244. doi: 10.2165/00002512-199711030-00006. [DOI] [PubMed] [Google Scholar]
- Zeng Z. S., Guillem J. G. Colocalisation of matrix metalloproteinase-9-mRNA and protein in human colorectal cancer stromal cells. Br J Cancer. 1996 Oct;74(8):1161–1167. doi: 10.1038/bjc.1996.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. S., Guillem J. G. Distinct pattern of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 mRNA expression in human colorectal cancer and liver metastases. Br J Cancer. 1995 Sep;72(3):575–582. doi: 10.1038/bjc.1995.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. S., Huang Y., Cohen A. M., Guillem J. G. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol. 1996 Dec;14(12):3133–3140. doi: 10.1200/JCO.1996.14.12.3133. [DOI] [PubMed] [Google Scholar]
- Zucker S., Lysik R. M., Zarrabi M. H., Moll U. M(r) 92,000 type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res. 1993 Jan 1;53(1):140–146. [PubMed] [Google Scholar]