Abstract
The CD44 proteins form a ubiquitously expressed family of cell surface adhesion molecules involved in cell-cell and cell-matrix interactions. The multiple protein isoforms are encoded by a single gene by alternative splicing and are further modified by a range of post-translational modifications. CD44 proteins are single chain molecules comprising an N-terminal extracellular domain, a membrane proximal region, a transmembrane domain, and a cytoplasmic tail. The CD44 gene has only been detected in higher organisms and the amino acid sequence of most of the molecule is highly conserved between mammalian species. The principal ligand of CD44 is hyaluronic acid, an integral component of the extracellular matrix. Other CD44 ligands include osteopontin, serglycin, collagens, fibronectin, and laminin. The major physiological role of CD44 is to maintain organ and tissue structure via cell-cell and cell-matrix adhesion, but certain variant isoforms can also mediate lymphocyte activation and homing, and the presentation of chemical factors and hormones. Increased interest has been directed at the characterisation of this molecule since it was observed that expression of multiple CD44 isoforms is greatly upregulated in neoplasia. CD44, particularly its variants, may be useful as a diagnostic or prognostic marker of malignancy and, in at least some human cancers, it may be a potential target for cancer therapy. This review describes the structure of the CD44 gene and discusses some of its roles in physiological and pathological processes.
Full Text
The Full Text of this article is available as a PDF (207.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alho A. M., Underhill C. B. The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol. 1989 Apr;108(4):1557–1565. doi: 10.1083/jcb.108.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arch R., Wirth K., Hofmann M., Ponta H., Matzku S., Herrlich P., Zöller M. Participation in normal immune responses of a metastasis-inducing splice variant of CD44. Science. 1992 Jul 31;257(5070):682–685. doi: 10.1126/science.1496383. [DOI] [PubMed] [Google Scholar]
- Ayroldi E., Cannarile L., Migliorati G., Bartoli A., Nicoletti I., Riccardi C. CD44 (Pgp-1) inhibits CD3 and dexamethasone-induced apoptosis. Blood. 1995 Oct 1;86(7):2672–2678. [PubMed] [Google Scholar]
- Bajorath J., Greenfield B., Munro S. B., Day A. J., Aruffo A. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem. 1998 Jan 2;273(1):338–343. doi: 10.1074/jbc.273.1.338. [DOI] [PubMed] [Google Scholar]
- Bartolazzi A., Peach R., Aruffo A., Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med. 1994 Jul 1;180(1):53–66. doi: 10.1084/jem.180.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates R. C., Elith C. A., Thorne R. F., Burns G. F. Engagement of variant CD44 confers resistance to anti-integrin antibody-mediated apoptosis in a colon carcinoma cell line. Cell Adhes Commun. 1998 Jun;6(1):21–38. doi: 10.3109/15419069809069758. [DOI] [PubMed] [Google Scholar]
- Bennett K. L., Jackson D. G., Simon J. C., Tanczos E., Peach R., Modrell B., Stamenkovic I., Plowman G., Aruffo A. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol. 1995 Feb;128(4):687–698. doi: 10.1083/jcb.128.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett K. L., Modrell B., Greenfield B., Bartolazzi A., Stamenkovic I., Peach R., Jackson D. G., Spring F., Aruffo A. Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol. 1995 Dec;131(6 Pt 1):1623–1633. doi: 10.1083/jcb.131.6.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birch M., Mitchell S., Hart I. R. Isolation and characterization of human melanoma cell variants expressing high and low levels of CD44. Cancer Res. 1991 Dec 15;51(24):6660–6667. [PubMed] [Google Scholar]
- Bolodeoku J., Yoshida K., Sugino T., Churchman M., Woodman A., Goodison S., Tarin D. CD44 expression in human breast cancer cell lines is related to oestrogen receptor (ER) status and confluency in vitro. Biochem Soc Trans. 1997 May;25(2):356S–356S. doi: 10.1042/bst025356s. [DOI] [PubMed] [Google Scholar]
- Bourguignon L. Y., Gunja-Smith Z., Iida N., Zhu H. B., Young L. J., Muller W. J., Cardiff R. D. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol. 1998 Jul;176(1):206–215. doi: 10.1002/(SICI)1097-4652(199807)176:1<206::AID-JCP22>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Bourguignon L. Y., Kalomiris E. L., Lokeshwar V. B. Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J Biol Chem. 1991 Jun 25;266(18):11761–11765. [PubMed] [Google Scholar]
- Bourguignon L. Y., Zhu D., Zhu H. CD44 isoform-cytoskeleton interaction in oncogenic signaling and tumor progression. Front Biosci. 1998 Jul 1;3:d637–d649. doi: 10.2741/a308. [DOI] [PubMed] [Google Scholar]
- Bourguignon L. Y., Zhu H., Chu A., Iida N., Zhang L., Hung M. C. Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem. 1997 Oct 31;272(44):27913–27918. doi: 10.1074/jbc.272.44.27913. [DOI] [PubMed] [Google Scholar]
- Burg M. A., Grako K. A., Stallcup W. B. Expression of the NG2 proteoglycan enhances the growth and metastatic properties of melanoma cells. J Cell Physiol. 1998 Nov;177(2):299–312. doi: 10.1002/(SICI)1097-4652(199811)177:2<299::AID-JCP12>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Cooper D. L., Dougherty G. J. To metastasize or not? Selection of CD44 splice sites. Nat Med. 1995 Jul;1(7):635–637. doi: 10.1038/nm0795-635. [DOI] [PubMed] [Google Scholar]
- De Rossi G., Marroni P., Paganuzzi M., Mauro F. R., Tenca C., Zarcone D., Velardi A., Molica S., Grossi C. E. Increased serum levels of soluble CD44 standard, but not of variant isoforms v5 and v6, in B cell chronic lymphocytic leukemia. Leukemia. 1997 Jan;11(1):134–141. doi: 10.1038/sj.leu.2400525. [DOI] [PubMed] [Google Scholar]
- DeGrendele H. C., Estess P., Siegelman M. H. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science. 1997 Oct 24;278(5338):672–675. doi: 10.1126/science.278.5338.672. [DOI] [PubMed] [Google Scholar]
- DeGrendele H. C., Kosfiszer M., Estess P., Siegelman M. H. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol. 1997 Sep 15;159(6):2549–2553. [PubMed] [Google Scholar]
- Dougherty G. J., Landorp P. M., Cooper D. L., Humphries R. K. Molecular cloning of CD44R1 and CD44R2, two novel isoforms of the human CD44 lymphocyte "homing" receptor expressed by hemopoietic cells. J Exp Med. 1991 Jul 1;174(1):1–5. doi: 10.1084/jem.174.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driessens M. H., Stroeken P. J., Rodriguez Erena N. F., van der Valk M. A., van Rijthoven E. A., Roos E. Targeted disruption of CD44 in MDAY-D2 lymphosarcoma cells has no effect on subcutaneous growth or metastatic capacity. J Cell Biol. 1995 Dec;131(6 Pt 2):1849–1855. doi: 10.1083/jcb.131.6.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ermak G., Jennings T., Boguniewicz A., Figge J. Novel CD44 messenger RNA isoforms in human thyroid and breast tissues feature unusual sequence rearrangements. Clin Cancer Res. 1996 Aug;2(8):1251–1254. [PubMed] [Google Scholar]
- Estess P., DeGrendele H. C., Pascual V., Siegelman M. H. Functional activation of lymphocyte CD44 in peripheral blood is a marker of autoimmune disease activity. J Clin Invest. 1998 Sep 15;102(6):1173–1182. doi: 10.1172/JCI4235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faassen A. E., Schrager J. A., Klein D. J., Oegema T. R., Couchman J. R., McCarthy J. B. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol. 1992 Jan;116(2):521–531. doi: 10.1083/jcb.116.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galluzzo E., Albi N., Fiorucci S., Merigiola C., Ruggeri L., Tosti A., Grossi C. E., Velardi A. Involvement of CD44 variant isoforms in hyaluronate adhesion by human activated T cells. Eur J Immunol. 1995 Oct;25(10):2932–2939. doi: 10.1002/eji.1830251033. [DOI] [PubMed] [Google Scholar]
- Gansauge F., Gansauge S., Zobywalski A., Scharnweber C., Link K. H., Nussler A. K., Beger H. G. Differential expression of CD44 splice variants in human pancreatic adenocarcinoma and in normal pancreas. Cancer Res. 1995 Dec 1;55(23):5499–5503. [PubMed] [Google Scholar]
- Givehchian M., Wörner S., Sträter J., Zöller M., Heuschen U., Heuschen G., Lehnert T., Herfarth C., von Knebel Doeberitz M. No evidence for cancer-related CD44 splice variants in primary and metastatic colorectal cancer. Eur J Cancer. 1998 Jun;34(7):1099–1104. doi: 10.1016/s0959-8049(98)00046-x. [DOI] [PubMed] [Google Scholar]
- Goldstein L. A., Butcher E. C. Identification of mRNA that encodes an alternative form of H-CAM(CD44) in lymphoid and nonlymphoid tissues. Immunogenetics. 1990;32(6):389–397. doi: 10.1007/BF00241632. [DOI] [PubMed] [Google Scholar]
- Goodfellow P. N., Banting G., Wiles M. V., Tunnacliffe A., Parkar M., Solomon E., Dalchau R., Fabre J. W. The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10.44.2, is on human chromosome 11. Eur J Immunol. 1982 Aug;12(8):659–663. doi: 10.1002/eji.1830120807. [DOI] [PubMed] [Google Scholar]
- Goodison S., Tarin D. Clinical implications of anomalous CD44 gene expression in neoplasia. Front Biosci. 1998 Jul 1;3:e89–109. doi: 10.2741/a370. [DOI] [PubMed] [Google Scholar]
- Goodison S., Yoshida K., Churchman M., Tarin D. Multiple intron retention occurs in tumor cell CD44 mRNA processing. Am J Pathol. 1998 Oct;153(4):1221–1228. doi: 10.1016/S0002-9440(10)65666-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodison S., Yoshida K., Sugino T., Woodman A., Gorham H., Bolodeoku J., Kaufmann M., Tarin D. Rapid analysis of distinctive CD44 RNA splicing preferences that characterize colonic tumors. Cancer Res. 1997 Aug 1;57(15):3140–3144. [PubMed] [Google Scholar]
- Gorham H., Sugino T., Woodman A. C., Tarin D. Cellular distribution of CD44 gene transcripts in colorectal carcinomas and in normal colonic mucosa. J Clin Pathol. 1996 Jun;49(6):482–488. doi: 10.1136/jcp.49.6.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green S. J., Tarone G., Underhill C. B. Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor. Exp Cell Res. 1988 Oct;178(2):224–232. doi: 10.1016/0014-4827(88)90393-x. [DOI] [PubMed] [Google Scholar]
- Griffioen A. W., Horst E., Heider K. H., Wielenga V. J., Adolf G. R., Herrlich P., Pals S. T. Expression of CD44 splice variants during lymphocyte activation and tumor progression. Cell Adhes Commun. 1994 Jul;2(3):195–200. doi: 10.3109/15419069409004437. [DOI] [PubMed] [Google Scholar]
- Günthert U., Hofmann M., Rudy W., Reber S., Zöller M., Haussmann I., Matzku S., Wenzel A., Ponta H., Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991 Apr 5;65(1):13–24. doi: 10.1016/0092-8674(91)90403-l. [DOI] [PubMed] [Google Scholar]
- Henke C., Bitterman P., Roongta U., Ingbar D., Polunovsky V. Induction of fibroblast apoptosis by anti-CD44 antibody: implications for the treatment of fibroproliferative lung disease. Am J Pathol. 1996 Nov;149(5):1639–1650. [PMC free article] [PubMed] [Google Scholar]
- Hofmann M., Rudy W., Zöller M., Tölg C., Ponta H., Herrlich P., Günthert U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res. 1991 Oct 1;51(19):5292–5297. [PubMed] [Google Scholar]
- Hong R. L., Pu Y. S., Chu J. S., Lee W. J., Chen Y. C., Wu C. W. Correlation of expression of CD44 isoforms and E-cadherin with differentiation in human urothelial cell lines and transitional cell carcinoma. Cancer Lett. 1995 Feb 10;89(1):81–87. doi: 10.1016/0304-3835(95)90161-2. [DOI] [PubMed] [Google Scholar]
- Iida N., Bourguignon L. Y. New CD44 splice variants associated with human breast cancers. J Cell Physiol. 1995 Jan;162(1):127–133. doi: 10.1002/jcp.1041620115. [DOI] [PubMed] [Google Scholar]
- Jackson D. G., Bell J. I., Dickinson R., Timans J., Shields J., Whittle N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol. 1995 Feb;128(4):673–685. doi: 10.1083/jcb.128.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jain M., He Q., Lee W. S., Kashiki S., Foster L. C., Tsai J. C., Lee M. E., Haber E. Role of CD44 in the reaction of vascular smooth muscle cells to arterial wall injury. J Clin Invest. 1996 Aug 1;98(3):877–877. [PMC free article] [PubMed] [Google Scholar]
- Jalkanen S., Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol. 1992 Feb;116(3):817–825. doi: 10.1083/jcb.116.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katoh S., McCarthy J. B., Kincade P. W. Characterization of soluble CD44 in the circulation of mice. Levels are affected by immune activity and tumor growth. J Immunol. 1994 Oct 15;153(8):3440–3449. [PubMed] [Google Scholar]
- Knutson J. R., Iida J., Fields G. B., McCarthy J. B. CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell. 1996 Mar;7(3):383–396. doi: 10.1091/mbc.7.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kogerman P., Sy M. S., Culp L. A. CD44 protein levels and its biological activity are regulated in Balb/c 3T3 fibroblasts by serum factors and by transformation with the ras but not with the sis oncogene. J Cell Physiol. 1996 Nov;169(2):341–349. doi: 10.1002/(SICI)1097-4652(199611)169:2<341::AID-JCP13>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Kogerman P., Sy M. S., Culp L. A. Oncogene-dependent expression of CD44 in Balb/c 3T3 derivatives: correlation with metastatic competence. Clin Exp Metastasis. 1996 Jan;14(1):73–82. doi: 10.1007/BF00157688. [DOI] [PubMed] [Google Scholar]
- Kogerman P., Sy M. S., Culp L. A. Over-expression of human CD44s in murine 3T3 cells: selection against during primary tumorigenesis and selection for during micrometastasis. Clin Exp Metastasis. 1998 Jan;16(1):83–93. doi: 10.1023/a:1006568103588. [DOI] [PubMed] [Google Scholar]
- Kohda D., Morton C. J., Parkar A. A., Hatanaka H., Inagaki F. M., Campbell I. D., Day A. J. Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell. 1996 Sep 6;86(5):767–775. doi: 10.1016/s0092-8674(00)80151-8. [DOI] [PubMed] [Google Scholar]
- Konig H., Moll J., Ponta H., Herrlich P. Trans-acting factors regulate the expression of CD44 splice variants. EMBO J. 1996 Aug 1;15(15):4030–4039. [PMC free article] [PubMed] [Google Scholar]
- König H., Ponta H., Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 1998 May 15;17(10):2904–2913. doi: 10.1093/emboj/17.10.2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legg J. W., Isacke C. M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr Biol. 1998 Jun 4;8(12):705–708. doi: 10.1016/s0960-9822(98)70277-5. [DOI] [PubMed] [Google Scholar]
- Lesley J., English N., Perschl A., Gregoroff J., Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J Exp Med. 1995 Aug 1;182(2):431–437. doi: 10.1084/jem.182.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
- Lesley J., Kincade P. W., Hyman R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol. 1993 Aug;23(8):1902–1909. doi: 10.1002/eji.1830230826. [DOI] [PubMed] [Google Scholar]
- Liao H. X., Lee D. M., Levesque M. C., Haynes B. F. N-terminal and central regions of the human CD44 extracellular domain participate in cell surface hyaluronan binding. J Immunol. 1995 Oct 15;155(8):3938–3945. [PubMed] [Google Scholar]
- Liu D., Liu T., Sy M. S. Identification of two regions in the cytoplasmic domain of CD44 through which PMA, calcium, and foskolin differentially regulate the binding of CD44 to hyaluronic acid. Cell Immunol. 1998 Dec 15;190(2):132–140. doi: 10.1006/cimm.1998.1397. [DOI] [PubMed] [Google Scholar]
- Liu D., Sy M. S. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. J Exp Med. 1996 May 1;183(5):1987–1994. doi: 10.1084/jem.183.5.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lokeshwar V. B., Fregien N., Bourguignon L. Y. Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function. J Cell Biol. 1994 Aug;126(4):1099–1109. doi: 10.1083/jcb.126.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay C. R., Terpe H. J., Stauder R., Marston W. L., Stark H., Günthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol. 1994 Jan;124(1-2):71–82. doi: 10.1083/jcb.124.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura Y., Hanbury D., Smith J., Tarin D. Non-invasive detection of malignancy by identification of unusual CD44 gene activity in exfoliated cancer cells. BMJ. 1994 Mar 5;308(6929):619–624. doi: 10.1136/bmj.308.6929.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura Y., Sugiyama M., Matsumura S., Hayle A. J., Robinson P., Smith J. C., Tarin D. Unusual retention of introns in CD44 gene transcripts in bladder cancer provides new diagnostic and clinical oncological opportunities. J Pathol. 1995 Sep;177(1):11–20. doi: 10.1002/path.1711770104. [DOI] [PubMed] [Google Scholar]
- Matsumura Y., Tarin D. Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet. 1992 Oct 31;340(8827):1053–1058. doi: 10.1016/0140-6736(92)93077-z. [DOI] [PubMed] [Google Scholar]
- McKee C. M., Penno M. B., Cowman M., Burdick M. D., Strieter R. M., Bao C., Noble P. W. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest. 1996 Nov 15;98(10):2403–2413. doi: 10.1172/JCI119054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohamadzadeh M., DeGrendele H., Arizpe H., Estess P., Siegelman M. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest. 1998 Jan 1;101(1):97–108. doi: 10.1172/JCI1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moll J., Schmidt A., van der Putten H., Plug R., Ponta H., Herrlich P., Zöller M. Accelerated immune response in transgenic mice expressing rat CD44v4-v7 on T cells. J Immunol. 1996 Mar 15;156(6):2085–2094. [PubMed] [Google Scholar]
- Nunomura W., Takakuwa Y., Tokimitsu R., Krauss S. W., Kawashima M., Mohandas N. Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J Biol Chem. 1997 Nov 28;272(48):30322–30328. doi: 10.1074/jbc.272.48.30322. [DOI] [PubMed] [Google Scholar]
- Peach R. J., Hollenbaugh D., Stamenkovic I., Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993 Jul;122(1):257–264. doi: 10.1083/jcb.122.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perschl A., Lesley J., English N., Trowbridge I., Hyman R. Role of CD44 cytoplasmic domain in hyaluronan binding. Eur J Immunol. 1995 Feb;25(2):495–501. doi: 10.1002/eji.1830250228. [DOI] [PubMed] [Google Scholar]
- Piepkorn M., Hovingh P., Bennett K. L., Aruffo A., Linker A. Chondroitin sulphate composition and structure in alternatively spliced CD44 fusion proteins. Biochem J. 1997 Oct 15;327(Pt 2):499–506. doi: 10.1042/bj3270499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeder J. A., Gotley D. C., Walsh M. D., Fawcett J., Antalis T. M. Expression of antisense CD44 variant 6 inhibits colorectal tumor metastasis and tumor growth in a wound environment. Cancer Res. 1998 Aug 15;58(16):3719–3726. [PubMed] [Google Scholar]
- Ristamäki R., Joensuu H., Jalkanen S. Does soluble CD44 reflect the clinical behavior of human cancer? Curr Top Microbiol Immunol. 1996;213(Pt 3):155–166. doi: 10.1007/978-3-642-80071-9_10. [DOI] [PubMed] [Google Scholar]
- Rudy W., Hofmann M., Schwartz-Albiez R., Zöller M., Heider K. H., Ponta H., Herrlich P. The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res. 1993 Mar 15;53(6):1262–1268. [PubMed] [Google Scholar]
- Salles G., Zain M., Jiang W. M., Boussiotis V. A., Shipp M. A. Alternatively spliced CD44 transcripts in diffuse large-cell lymphomas: characterization and comparison with normal activated B cells and epithelial malignancies. Blood. 1993 Dec 15;82(12):3539–3547. [PubMed] [Google Scholar]
- Screaton G. R., Bell M. V., Bell J. I., Jackson D. G. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem. 1993 Jun 15;268(17):12235–12238. [PubMed] [Google Scholar]
- Screaton G. R., Bell M. V., Jackson D. G., Cornelis F. B., Gerth U., Bell J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12160–12164. doi: 10.1073/pnas.89.24.12160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seiter S., Arch R., Reber S., Komitowski D., Hofmann M., Ponta H., Herrlich P., Matzku S., Zöller M. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med. 1993 Feb 1;177(2):443–455. doi: 10.1084/jem.177.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman L., Sleeman J., Dall P., Hekele A., Moll J., Ponta H., Herrlich P. The CD44 proteins in embryonic development and in cancer. Curr Top Microbiol Immunol. 1996;213(Pt 1):249–269. doi: 10.1007/978-3-642-61107-0_15. [DOI] [PubMed] [Google Scholar]
- Sleeman J. P., Arming S., Moll J. F., Hekele A., Rudy W., Sherman L. S., Kreil G., Ponta H., Herrlich P. Hyaluronate-independent metastatic behavior of CD44 variant-expressing pancreatic carcinoma cells. Cancer Res. 1996 Jul 1;56(13):3134–3141. [PubMed] [Google Scholar]
- Sleeman J. P., Rahmsdorf U., Steffen A., Ponta H., Herrlich P. CD44 variant exon v5 encodes a tyrosine that is sulphated. Eur J Biochem. 1998 Jul 1;255(1):74–80. doi: 10.1046/j.1432-1327.1998.2550074.x. [DOI] [PubMed] [Google Scholar]
- Sleeman J., Rudy W., Hofmann M., Moll J., Herrlich P., Ponta H. Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity. J Cell Biol. 1996 Nov;135(4):1139–1150. doi: 10.1083/jcb.135.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southgate J., Trejdosiewicz L. K., Smith B., Selby P. J. Patterns of splice variant CD44 expression by normal human urothelium in situ and in vitro and by bladder-carcinoma cell lines. Int J Cancer. 1995 Aug 9;62(4):449–456. doi: 10.1002/ijc.2910620415. [DOI] [PubMed] [Google Scholar]
- Stamenkovic I., Amiot M., Pesando J. M., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell. 1989 Mar 24;56(6):1057–1062. doi: 10.1016/0092-8674(89)90638-7. [DOI] [PubMed] [Google Scholar]
- Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stauder R., Eisterer W., Thaler J., Günthert U. CD44 variant isoforms in non-Hodgkin's lymphoma: a new independent prognostic factor. Blood. 1995 May 15;85(10):2885–2899. [PubMed] [Google Scholar]
- Sugino T., Gorham H., Yoshida K., Bolodeoku J., Nargund V., Cranston D., Goodison S., Tarin D. Progressive loss of CD44 gene expression in invasive bladder cancer. Am J Pathol. 1996 Sep;149(3):873–882. [PMC free article] [PubMed] [Google Scholar]
- Sugino T., Yoshida K., Zhao S., Goodison S., Tarin D. Disorderly CD44 gene expression in human cancer cells can be modulated by growth conditions. J Pathol. 1998 Sep;186(1):17–23. doi: 10.1002/(SICI)1096-9896(199809)186:1<17::AID-PATH138>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- Sy M. S., Guo Y. J., Stamenkovic I. Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med. 1991 Oct 1;174(4):859–866. doi: 10.1084/jem.174.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sy M. S., Guo Y. J., Stamenkovic I. Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein. J Exp Med. 1992 Aug 1;176(2):623–627. doi: 10.1084/jem.176.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terpe H. J., Stark H., Prehm P., Günthert U. CD44 variant isoforms are preferentially expressed in basal epithelial of non-malignant human fetal and adult tissues. Histochemistry. 1994 Feb;101(2):79–89. doi: 10.1007/BF00269353. [DOI] [PubMed] [Google Scholar]
- Thomas L., Byers H. R., Vink J., Stamenkovic I. CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol. 1992 Aug;118(4):971–977. doi: 10.1083/jcb.118.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyama-Sorimachi N., Kitamura F., Habuchi H., Tobita Y., Kimata K., Miyasaka M. Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability in hematopoietic cells. J Biol Chem. 1997 Oct 17;272(42):26714–26719. doi: 10.1074/jbc.272.42.26714. [DOI] [PubMed] [Google Scholar]
- Toyama-Sorimachi N., Miyasaka M. A novel ligand for CD44 is sulfated proteoglycan. Int Immunol. 1994 Apr;6(4):655–660. doi: 10.1093/intimm/6.4.655. [DOI] [PubMed] [Google Scholar]
- Toyama-Sorimachi N., Sorimachi H., Tobita Y., Kitamura F., Yagita H., Suzuki K., Miyasaka M. A novel ligand for CD44 is serglycin, a hematopoietic cell lineage-specific proteoglycan. Possible involvement in lymphoid cell adherence and activation. J Biol Chem. 1995 Mar 31;270(13):7437–7444. doi: 10.1074/jbc.270.13.7437. [DOI] [PubMed] [Google Scholar]
- Trochon V., Mabilat C., Bertrand P., Legrand Y., Smadja-Joffe F., Soria C., Delpech B., Lu H. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int J Cancer. 1996 May 29;66(5):664–668. doi: 10.1002/(SICI)1097-0215(19960529)66:5<664::AID-IJC14>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Tsukita S., Oishi K., Sato N., Sagara J., Kawai A., Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol. 1994 Jul;126(2):391–401. doi: 10.1083/jcb.126.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tölg C., Hofmann M., Herrlich P., Ponta H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res. 1993 Mar 11;21(5):1225–1229. doi: 10.1093/nar/21.5.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ue T., Yokozaki H., Kitadai Y., Yamamoto S., Yasui W., Ishikawa T., Tahara E. Co-expression of osteopontin and CD44v9 in gastric cancer. Int J Cancer. 1998 Apr 17;79(2):127–132. doi: 10.1002/(sici)1097-0215(19980417)79:2<127::aid-ijc5>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Underhill C., Dorfman A. The role of hyaluronic acid in intercellular adhesion of cultured mouse cells. Exp Cell Res. 1978 Nov;117(1):155–164. doi: 10.1016/0014-4827(78)90438-x. [DOI] [PubMed] [Google Scholar]
- Wainwright D., Sherman L., Sleeman J., Ponta H., Herrlich P. A splice variant of CD44 expressed in the rat apical ectodermal ridge contributes to limb outgrowth. Ann N Y Acad Sci. 1996 Jun 8;785:345–349. doi: 10.1111/j.1749-6632.1996.tb56305.x. [DOI] [PubMed] [Google Scholar]
- Weber G. F., Ashkar S., Cantor H. Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians. 1997 Jan;109(1):1–9. [PubMed] [Google Scholar]
- Weber G. F., Ashkar S., Glimcher M. J., Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 1996 Jan 26;271(5248):509–512. doi: 10.1126/science.271.5248.509. [DOI] [PubMed] [Google Scholar]
- Weiss J. M., Renkl A. C., Sleeman J., Dittmar H., Termeer C. C., Taxis S., Howells N., Schöpf E., Ponta H., Herrlich P. CD44 variant isoforms are essential for the function of epidermal Langerhans cells and dendritic cells. Cell Adhes Commun. 1998;6(2-3):157–160. doi: 10.3109/15419069809004472. [DOI] [PubMed] [Google Scholar]
- Woodman A. C., Sugiyama M., Yoshida K., Sugino T., Borgya A., Goodison S., Matsumura Y., Tarin D. Analysis of anomalous CD44 gene expression in human breast, bladder, and colon cancer and correlation of observed mRNA and protein isoforms. Am J Pathol. 1996 Nov;149(5):1519–1530. [PMC free article] [PubMed] [Google Scholar]
- Xu F. J., Stack S., Boyer C., O'Briant K., Whitaker R., Mills G. B., Yu Y. H., Bast R. C., Jr Heregulin and agonistic anti-p185(c-erbB2) antibodies inhibit proliferation but increase invasiveness of breast cancer cells that overexpress p185(c-erbB2): increased invasiveness may contribute to poor prognosis. Clin Cancer Res. 1997 Sep;3(9):1629–1634. [PubMed] [Google Scholar]
- Yang B., Yang B. L., Savani R. C., Turley E. A. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J. 1994 Jan 15;13(2):286–296. doi: 10.1002/j.1460-2075.1994.tb06261.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonemura S., Hirao M., Doi Y., Takahashi N., Kondo T., Tsukita S., Tsukita S. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol. 1998 Feb 23;140(4):885–895. doi: 10.1083/jcb.140.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida K., Bolodeoku J., Sugino T., Goodison S., Matsumura Y., Warren B. F., Toge T., Tahara E., Tarin D. Abnormal retention of intron 9 in CD44 gene transcripts in human gastrointestinal tumors. Cancer Res. 1995 Oct 1;55(19):4273–4277. [PubMed] [Google Scholar]
- Yu Q., Toole B. P., Stamenkovic I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med. 1997 Dec 15;186(12):1985–1996. doi: 10.1084/jem.186.12.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zahalka M. A., Okon E., Gosslar U., Holzmann B., Naor D. Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J Immunol. 1995 May 15;154(10):5345–5355. [PubMed] [Google Scholar]
- Zawadzki V., Perschl A., Rösel M., Hekele A., Zöller M. Blockade of metastasis formation by CD44-receptor globulin. Int J Cancer. 1998 Mar 16;75(6):919–924. doi: 10.1002/(sici)1097-0215(19980316)75:6<919::aid-ijc15>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
- Zeng C., Toole B. P., Kinney S. D., Kuo J. W., Stamenkovic I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer. 1998 Jul 29;77(3):396–401. doi: 10.1002/(sici)1097-0215(19980729)77:3<396::aid-ijc15>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Zhu D., Bourguignon L. Y. The ankyrin-binding domain of CD44s is involved in regulating hyaluronic acid-mediated functions and prostate tumor cell transformation. Cell Motil Cytoskeleton. 1998;39(3):209–222. doi: 10.1002/(SICI)1097-0169(1998)39:3<209::AID-CM4>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- van Weering D. H., Baas P. D., Bos J. L. A PCR-based method for the analysis of human CD44 splice products. PCR Methods Appl. 1993 Oct;3(2):100–106. doi: 10.1101/gr.3.2.100. [DOI] [PubMed] [Google Scholar]
