Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Oct;52(5):252–256. doi: 10.1136/mp.52.5.252

ATM protein synthesis patterns in sporadic breast cancer.

R Kairouz 1, R A Clarke 1, P J Marr 1, D Watters 1, M F Lavin 1, J H Kearsley 1, C S Lee 1
PMCID: PMC395706  PMID: 10748873

Abstract

AIMS: The gene mutated in ataxia-telangiectasia (A-T), designated ATM (for "A-T mutated"), is believed to be associated with an increased risk of developing breast cancer. Most patients with A-T have null mutations of the ATM gene that appear to give rise to a truncated nonfunctional ATM protein. Therefore, the increased risk of breast cancer reported in A-T heterozygotes appears to be the result of haplo-insufficiency of ATM in breast tissues. This study aimed to determine whether reduced synthesis of ATM was also an important factor in sporadic breast cancer. METHODS: Paraffin wax embedded tissues from patients with breast invasive ductal carcinoma (IDC) (n = 42), patients with ductal carcinoma in situ (DCIS) (n = 17), and others with lymph node metastases (n = 14) were studied. A streptavidin-biotin-peroxidase system was used to stain tissue sections for the ATM protein using the ATM-4BA and CT-1 polyclonal and monoclonal antibodies, respectively. The protein truncation test was used to screen for mutations in the ATM gene in those patients who had greatly reduced ATM protein immunoreactivity in the primary carcinoma (n = 3). RESULTS: Most metastatic breast carcinomas in lymph nodes (71%) had greatly reduced or absent ATM protein synthesis, which was significant when compared with that observed in non-metastatic invasive breast carcinomas (p = 0.029; chi 2 test). Although not significant (p = 0.045; chi 2 test), some sporadic breast carcinomas (14 of 42) also had reduced or absent ATM protein immunoreactivity. The protein truncation test did not reveal any gross ATM gene abnormality in the cases tested, indicating that the patients were not A-T heterozygotes, who are predisposed to breast cancer. CONCLUSIONS: A reduction in immunohistochemically detectable ATM protein in sporadic breast carcinoma implicates ATM in the progression of the disease.

Full Text

The Full Text of this article is available as a PDF (174.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Athma P., Rappaport R., Swift M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet. 1996 Dec;92(2):130–134. doi: 10.1016/s0165-4608(96)00328-7. [DOI] [PubMed] [Google Scholar]
  2. Bishop D. T., Hopper J. AT-tributable risks? Nat Genet. 1997 Mar;15(3):226–226. doi: 10.1038/ng0397-226. [DOI] [PubMed] [Google Scholar]
  3. Byrd P. J., McConville C. M., Cooper P., Parkhill J., Stankovic T., McGuire G. M., Thick J. A., Taylor A. M. Mutations revealed by sequencing the 5' half of the gene for ataxia telangiectasia. Hum Mol Genet. 1996 Jan;5(1):145–149. doi: 10.1093/hmg/5.1.145. [DOI] [PubMed] [Google Scholar]
  4. Børresen A. L., Andersen T. I., Tretli S., Heiberg A., Møller P. Breast cancer and other cancers in Norwegian families with ataxia-telangiectasia. Genes Chromosomes Cancer. 1990 Nov;2(4):339–340. doi: 10.1002/gcc.2870020412. [DOI] [PubMed] [Google Scholar]
  5. Canman C. E., Wolff A. C., Chen C. Y., Fornace A. J., Jr, Kastan M. B. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res. 1994 Oct 1;54(19):5054–5058. [PubMed] [Google Scholar]
  6. Clarke R. A., Goozee G. R., Birrell G., Fang Z. M., Hasnain H., Lavin M., Kearsley J. H. Absence of ATM truncations in patients with severe acute radiation reactions. Int J Radiat Oncol Biol Phys. 1998 Jul 15;41(5):1021–1027. doi: 10.1016/s0360-3016(98)00171-0. [DOI] [PubMed] [Google Scholar]
  7. Clarke R. A., Kairouz R., Watters D., Lavin M. F., Kearsley J. H., Lee C. S. Upregulation of ATM in sclerosing adenosis of the breast. Mol Pathol. 1998 Aug;51(4):224–226. doi: 10.1136/mp.51.4.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elston C. W., Ellis I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991 Nov;19(5):403–410. doi: 10.1111/j.1365-2559.1991.tb00229.x. [DOI] [PubMed] [Google Scholar]
  9. FitzGerald M. G., Bean J. M., Hegde S. R., Unsal H., MacDonald D. J., Harkin D. P., Finkelstein D. M., Isselbacher K. J., Haber D. A. Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet. 1997 Mar;15(3):307–310. doi: 10.1038/ng0397-307. [DOI] [PubMed] [Google Scholar]
  10. Gatti R. A., Berkel I., Boder E., Braedt G., Charmley P., Concannon P., Ersoy F., Foroud T., Jaspers N. G., Lange K. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988 Dec 8;336(6199):577–580. doi: 10.1038/336577a0. [DOI] [PubMed] [Google Scholar]
  11. Gilad S., Khosravi R., Shkedy D., Uziel T., Ziv Y., Savitsky K., Rotman G., Smith S., Chessa L., Jorgensen T. J. Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet. 1996 Apr;5(4):433–439. doi: 10.1093/hmg/5.4.433. [DOI] [PubMed] [Google Scholar]
  12. Gonzalez-Zulueta M., Bender C. M., Yang A. S., Nguyen T., Beart R. W., Van Tornout J. M., Jones P. A. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995 Oct 15;55(20):4531–4535. [PubMed] [Google Scholar]
  13. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  14. Khanna K. K., Beamish H., Yan J., Hobson K., Williams R., Dunn I., Lavin M. F. Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene. 1995 Aug 17;11(4):609–618. [PubMed] [Google Scholar]
  15. Lavin M. F., Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 1997;15:177–202. doi: 10.1146/annurev.immunol.15.1.177. [DOI] [PubMed] [Google Scholar]
  16. Man S., Ellis I. O., Sibbering M., Blamey R. W., Brook J. D. High levels of allele loss at the FHIT and ATM genes in non-comedo ductal carcinoma in situ and grade I tubular invasive breast cancers. Cancer Res. 1996 Dec 1;56(23):5484–5489. [PubMed] [Google Scholar]
  17. Roest P. A., Roberts R. G., Sugino S., van Ommen G. J., den Dunnen J. T. Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Hum Mol Genet. 1993 Oct;2(10):1719–1721. doi: 10.1093/hmg/2.10.1719. [DOI] [PubMed] [Google Scholar]
  18. Sakai T., Toguchida J., Ohtani N., Yandell D. W., Rapaport J. M., Dryja T. P. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991 May;48(5):880–888. [PMC free article] [PubMed] [Google Scholar]
  19. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  20. Savitsky K., Sfez S., Tagle D. A., Ziv Y., Sartiel A., Collins F. S., Shiloh Y., Rotman G. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet. 1995 Nov;4(11):2025–2032. doi: 10.1093/hmg/4.11.2025. [DOI] [PubMed] [Google Scholar]
  21. Swift M., Morrell D., Massey R. B., Chase C. L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991 Dec 26;325(26):1831–1836. doi: 10.1056/NEJM199112263252602. [DOI] [PubMed] [Google Scholar]
  22. Swift M., Reitnauer P. J., Morrell D., Chase C. L. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med. 1987 May 21;316(21):1289–1294. doi: 10.1056/NEJM198705213162101. [DOI] [PubMed] [Google Scholar]
  23. Telatar M., Wang Z., Udar N., Liang T., Bernatowska-Matuszkiewicz E., Lavin M., Shiloh Y., Concannon P., Good R. A., Gatti R. A. Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am J Hum Genet. 1996 Jul;59(1):40–44. [PMC free article] [PubMed] [Google Scholar]
  24. Tomlinson I. P., Strickland J. E., Lee A. S., Bromley L., Evans M. F., Morton J., McGee J. O. Loss of heterozygosity on chromosome 11 q in breast cancer. J Clin Pathol. 1995 May;48(5):424–428. doi: 10.1136/jcp.48.5.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vorechovský I., Luo L., Dyer M. J., Catovsky D., Amlot P. L., Yaxley J. C., Foroni L., Hammarström L., Webster A. D., Yuille M. A. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997 Sep;17(1):96–99. doi: 10.1038/ng0997-96. [DOI] [PubMed] [Google Scholar]
  26. Vorechovský I., Rasio D., Luo L., Monaco C., Hammarström L., Webster A. D., Zaloudik J., Barbanti-Brodani G., James M., Russo G. The ATM gene and susceptibility to breast cancer: analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res. 1996 Jun 15;56(12):2726–2732. [PubMed] [Google Scholar]
  27. Watters D., Khanna K. K., Beamish H., Birrell G., Spring K., Kedar P., Gatei M., Stenzel D., Hobson K., Kozlov S. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene. 1997 Apr 24;14(16):1911–1921. doi: 10.1038/sj.onc.1201037. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES