Skip to main content
Molecular Pathology : MP logoLink to Molecular Pathology : MP
. 1999 Oct;52(5):257–262. doi: 10.1136/mp.52.5.257

K-ras mutations appear in the premalignant phase of both microsatellite stable and unstable endometrial carcinogenesis.

G L Mutter 1, H Wada 1, W C Faquin 1, T Enomoto 1
PMCID: PMC395707  PMID: 10748874

Abstract

AIMS: Sequential events of endometrial tumorigenesis can be studied by comparison of genetic lesions seen in normal, premalignant, and malignant tissues. The distribution of k-ras mutations in microsatellite stable and unstable premalignant lesions was studied to determine whether this gene is implicated in both tumorigenic pathways. METHODS: K-ras mutations were analysed by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and direct sequencing in matched endometrial normal, premalignant (atypical hyperplasias), and adenocarcinoma tissues from individual patients. Identification of precancers solely by their appearance as atypical endometrial hyperplasias is very subjective; therefore, in addition to histopathological assessment, we performed molecular testing (non-random X inactivation or clonal altered microsatellites) for an expected feature of precancers--that is, monoclonality. RESULTS: Equivalent K-ras mutation frequencies were seen in microsatellite stable (six of 33) and unstable (three of 23) cancers. In both types, K-ras mutation in monoclonal precancers usually corresponded to a change from normal to an equivocal (two of 12) or hyperplastic (10 of 12) histology. Divergent K-ras genotypes among multiple neoplastic tissues of individual patients (two of six patients) are exceptions explained either by multicentric premalignant disease, or acquisition of K-ras mutation late in neoplastic progression. CONCLUSIONS: K-ras mutation occurs in both premalignant microsatellite stable and unstable endometrial neoplasia, sometimes before acquisition of features readily diagnostic as atypical endometrial hyperplasia.

Full Text

The Full Text of this article is available as a PDF (308.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burks R. T., Kessis T. D., Cho K. R., Hedrick L. Microsatellite instability in endometrial carcinoma. Oncogene. 1994 Apr;9(4):1163–1166. [PubMed] [Google Scholar]
  2. Caduff R. F., Johnston C. M., Frank T. S. Mutations of the Ki-ras oncogene in carcinoma of the endometrium. Am J Pathol. 1995 Jan;146(1):182–188. [PMC free article] [PubMed] [Google Scholar]
  3. Caduff R. F., Johnston C. M., Svoboda-Newman S. M., Poy E. L., Merajver S. D., Frank T. S. Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol. 1996 May;148(5):1671–1678. [PMC free article] [PubMed] [Google Scholar]
  4. Duggan B. D., Felix J. C., Muderspach L. I., Tourgeman D., Zheng J., Shibata D. Microsatellite instability in sporadic endometrial carcinoma. J Natl Cancer Inst. 1994 Aug 17;86(16):1216–1221. doi: 10.1093/jnci/86.16.1216. [DOI] [PubMed] [Google Scholar]
  5. Duggan B. D., Felix J. C., Muderspach L. I., Tsao J. L., Shibata D. K. Early mutational activation of the c-Ki-ras oncogene in endometrial carcinoma. Cancer Res. 1994 Mar 15;54(6):1604–1607. [PubMed] [Google Scholar]
  6. Enomoto T., Fujita M., Inoue M., Nomura T., Shroyer K. R. Alteration of the p53 tumor suppressor gene and activation of c-K-ras-2 protooncogene in endometrial adenocarcinoma from Colorado. Am J Clin Pathol. 1995 Feb;103(2):224–230. doi: 10.1093/ajcp/103.2.224. [DOI] [PubMed] [Google Scholar]
  7. Enomoto T., Fujita M., Inoue M., Rice J. M., Nakajima R., Tanizawa O., Nomura T. Alterations of the p53 tumor suppressor gene and its association with activation of the c-K-ras-2 protooncogene in premalignant and malignant lesions of the human uterine endometrium. Cancer Res. 1993 Apr 15;53(8):1883–1888. [PubMed] [Google Scholar]
  8. Enomoto T., Weghorst C. M., Inoue M., Tanizawa O., Rice J. M. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary. Am J Pathol. 1991 Oct;139(4):777–785. [PMC free article] [PubMed] [Google Scholar]
  9. Eshleman J. R., Lang E. Z., Bowerfind G. K., Parsons R., Vogelstein B., Willson J. K., Veigl M. L., Sedwick W. D., Markowitz S. D. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene. 1995 Jan 5;10(1):33–37. [PubMed] [Google Scholar]
  10. Esteller M., García A., Martínez-Palones J. M., Xercavins J., Reventós J. Detection of clonality and genetic alterations in endometrial pipelle biopsy and its surgical specimen counterpart. Lab Invest. 1997 Jan;76(1):109–116. [PubMed] [Google Scholar]
  11. Esteller M., Levine R., Baylin S. B., Ellenson L. H., Herman J. G. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998 Nov 5;17(18):2413–2417. doi: 10.1038/sj.onc.1202178. [DOI] [PubMed] [Google Scholar]
  12. Fujita M., Inoue M., Tanizawa O., Iwamoto S., Enomoto T. Alterations of the p53 gene in human primary cervical carcinoma with and without human papillomavirus infection. Cancer Res. 1992 Oct 1;52(19):5323–5328. [PubMed] [Google Scholar]
  13. Fujiwara T., Stolker J. M., Watanabe T., Rashid A., Longo P., Eshleman J. R., Booker S., Lynch H. T., Jass J. R., Green J. S. Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am J Pathol. 1998 Oct;153(4):1063–1078. doi: 10.1016/S0002-9440(10)65651-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gurin C. C., Federici M. G., Kang L., Boyd J. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res. 1999 Jan 15;59(2):462–466. [PubMed] [Google Scholar]
  15. Hongyo T., Buzard G. S., Calvert R. J., Weghorst C. M. 'Cold SSCP': a simple, rapid and non-radioactive method for optimized single-strand conformation polymorphism analyses. Nucleic Acids Res. 1993 Aug 11;21(16):3637–3642. doi: 10.1093/nar/21.16.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inoue M., Okayama A., Fujita M., Enomoto T., Sakata M., Tanizawa O., Ueshima H. Clinicopathological characteristics of p53 overexpression in endometrial cancers. Int J Cancer. 1994 Jul 1;58(1):14–19. doi: 10.1002/ijc.2910580104. [DOI] [PubMed] [Google Scholar]
  17. Jovanovic A. S., Boynton K. A., Mutter G. L. Uteri of women with endometrial carcinoma contain a histopathological spectrum of monoclonal putative precancers, some with microsatellite instability. Cancer Res. 1996 Apr 15;56(8):1917–1921. [PubMed] [Google Scholar]
  18. Kobayashi K., Sagae S., Kudo R., Saito H., Koi S., Nakamura Y. Microsatellite instability in endometrial carcinomas: frequent replication errors in tumors of early onset and/or of poorly differentiated type. Genes Chromosomes Cancer. 1995 Oct;14(2):128–132. doi: 10.1002/gcc.2870140207. [DOI] [PubMed] [Google Scholar]
  19. Kohler M. F., Berchuck A., Davidoff A. M., Humphrey P. A., Dodge R. K., Iglehart J. D., Soper J. T., Clarke-Pearson D. L., Bast R. C., Jr, Marks J. R. Overexpression and mutation of p53 in endometrial carcinoma. Cancer Res. 1992 Mar 15;52(6):1622–1627. [PubMed] [Google Scholar]
  20. Kohler M. F., Nishii H., Humphrey P. A., Saski H., Marks J., Bast R. C., Clarke-Pearson D. L., Boyd J., Berchuck A. Mutation of the p53 tumor-suppressor gene is not a feature of endometrial hyperplasias. Am J Obstet Gynecol. 1993 Sep;169(3):690–694. doi: 10.1016/0002-9378(93)90644-x. [DOI] [PubMed] [Google Scholar]
  21. Levine R. L., Cargile C. B., Blazes M. S., van Rees B., Kurman R. J., Ellenson L. H. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 1998 Aug 1;58(15):3254–3258. [PubMed] [Google Scholar]
  22. Minamoto T., Esumi H., Ochiai A., Belitsky G., Mai M., Sugimura T., Ronai Z. Combined analysis of microsatellite instability and K-ras mutation increases detection incidence of normal samples from colorectal cancer patients. Clin Cancer Res. 1997 Aug;3(8):1413–1417. [PubMed] [Google Scholar]
  23. Mutter G. L., Boynton K. A., Faquin W. C., Ruiz R. E., Jovanovic A. S. Allelotype mapping of unstable microsatellites establishes direct lineage continuity between endometrial precancers and cancer. Cancer Res. 1996 Oct 1;56(19):4483–4486. [PubMed] [Google Scholar]
  24. Mutter G. L., Boynton K. A. PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res. 1995 Apr 25;23(8):1411–1418. doi: 10.1093/nar/23.8.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mutter G. L., Boynton K. A. X chromosome inactivation in the normal female genital tract: implications for identification of neoplasia. Cancer Res. 1995 Nov 1;55(21):5080–5084. [PubMed] [Google Scholar]
  26. Mutter G. L., Chaponot M. L., Fletcher J. A. A polymerase chain reaction assay for non-random X chromosome inactivation identifies monoclonal endometrial cancers and precancers. Am J Pathol. 1995 Feb;146(2):501–508. [PMC free article] [PubMed] [Google Scholar]
  27. Parsons R., Li G. M., Longley M. J., Fang W. H., Papadopoulos N., Jen J., de la Chapelle A., Kinzler K. W., Vogelstein B., Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993 Dec 17;75(6):1227–1236. doi: 10.1016/0092-8674(93)90331-j. [DOI] [PubMed] [Google Scholar]
  28. Peiffer S. L., Herzog T. J., Tribune D. J., Mutch D. G., Gersell D. J., Goodfellow P. J. Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 1995 May 1;55(9):1922–1926. [PubMed] [Google Scholar]
  29. Risinger J. I., Berchuck A., Kohler M. F., Watson P., Lynch H. T., Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993 Nov 1;53(21):5100–5103. [PubMed] [Google Scholar]
  30. Risinger J. I., Hayes A. K., Berchuck A., Barrett J. C. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 1997 Nov 1;57(21):4736–4738. [PubMed] [Google Scholar]
  31. Sasaki H., Nishii H., Takahashi H., Tada A., Furusato M., Terashima Y., Siegal G. P., Parker S. L., Kohler M. F., Berchuck A. Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma. Cancer Res. 1993 Apr 15;53(8):1906–1910. [PubMed] [Google Scholar]
  32. Sherman M. E., Bur M. E., Kurman R. J. p53 in endometrial cancer and its putative precursors: evidence for diverse pathways of tumorigenesis. Hum Pathol. 1995 Nov;26(11):1268–1274. doi: 10.1016/0046-8177(95)90204-x. [DOI] [PubMed] [Google Scholar]
  33. Swisher E. M., Peiffer-Schneider S., Mutch D. G., Herzog T. J., Rader J. S., Elbendary A., Goodfellow P. J. Differences in patterns of TP53 and KRAS2 mutations in a large series of endometrial carcinomas with or without microsatellite instability. Cancer. 1999 Jan 1;85(1):119–126. doi: 10.1002/(sici)1097-0142(19990101)85:1<119::aid-cncr17>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  34. Tashiro H., Blazes M. S., Wu R., Cho K. R., Bose S., Wang S. I., Li J., Parsons R., Ellenson L. H. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997 Sep 15;57(18):3935–3940. [PubMed] [Google Scholar]
  35. Winkler B., Alvarez S., Richart R. M., Crum C. P. Pitfalls in the diagnosis of endometrial neoplasia. Obstet Gynecol. 1984 Aug;64(2):185–194. [PubMed] [Google Scholar]

Articles from Molecular Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES