Abstract
AIMS: The two electron reduction of quinones to hydroquinones by NAD(P)H quinone oxidoreductase (NQO1) plays an important role in both activation and detoxification of quinone and similarly reactive compounds. A single nucleotide polymorphism at exon 6 leads to an amino acid change at codon 187 from proline to serine. The variant allele has been associated with decreased NQO1 enzyme activity and increased cancer risks. The aim of this study was to develop a rapid genotyping procedure for epidemiological and clinical research into the potential biological and toxicological implications associated with this genetic polymorphism. METHODS: A high throughput genotyping method using fluorogenic probes has been developed to screen this single nucleotide polymorphism. This assay utilises the 5' nuclease activity of Taq polymerase in conjunction with fluorogenic TaqMan probes. The TaqMan genotyping procedure was validated by a restriction fragment length polymorphism method and direct sequencing. RESULTS: This method can be used for the rapid screening of known polymorphisms in large populations. In a population of 143 unrelated individuals, Pro/Pro (wildtype), Pro/Ser (heterozygous), and Ser/Ser (mutant) genotypes were 69.2%, 26.6%, and 4.2%, respectively. CONCLUSIONS: This genotyping method is highly accurate and could be applied to automated large scale genotyping studies.
Full Text
The Full Text of this article is available as a PDF (130.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cadenas E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem Pharmacol. 1995 Jan 18;49(2):127–140. doi: 10.1016/s0006-2952(94)00333-5. [DOI] [PubMed] [Google Scholar]
- Cènas N., Nemeikaitè A., Dickancaitè E., Anusevicius Z., Nivinskas H., Bironaitè D. The toxicity of aromatic nitrocompounds to bovine leukemia virus-transformed fibroblasts: the role of single-electron reduction. Biochim Biophys Acta. 1995 Aug 31;1268(2):159–164. doi: 10.1016/0167-4889(95)00064-y. [DOI] [PubMed] [Google Scholar]
- Gaedigk A., Tyndale R. F., Jurima-Romet M., Sellers E. M., Grant D. M., Leeder J. S. NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics. 1998 Aug;8(4):305–313. doi: 10.1097/00008571-199808000-00004. [DOI] [PubMed] [Google Scholar]
- Kelsey K. T., Ross D., Traver R. D., Christiani D. C., Zuo Z. F., Spitz M. R., Wang M., Xu X., Lee B. K., Schwartz B. S. Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer. 1997;76(7):852–854. doi: 10.1038/bjc.1997.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuehl B. L., Paterson J. W., Peacock J. W., Paterson M. C., Rauth A. M. Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br J Cancer. 1995 Sep;72(3):555–561. doi: 10.1038/bjc.1995.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livak K. J., Flood S. J., Marmaro J., Giusti W., Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995 Jun;4(6):357–362. doi: 10.1101/gr.4.6.357. [DOI] [PubMed] [Google Scholar]
- Lyamichev V., Brow M. A., Dahlberg J. E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 1993 May 7;260(5109):778–783. doi: 10.1126/science.7683443. [DOI] [PubMed] [Google Scholar]
- Riley R. J., Workman P. DT-diaphorase and cancer chemotherapy. Biochem Pharmacol. 1992 Apr 15;43(8):1657–1669. doi: 10.1016/0006-2952(92)90694-e. [DOI] [PubMed] [Google Scholar]
- Ross D., Traver R. D., Siegel D., Kuehl B. L., Misra V., Rauth A. M. A polymorphism in NAD(P)H:quinone oxidoreductase (NQO1): relationship of a homozygous mutation at position 609 of the NQO1 cDNA to NQO1 activity. Br J Cancer. 1996 Sep;74(6):995–996. doi: 10.1038/bjc.1996.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosvold E. A., McGlynn K. A., Lustbader E. D., Buetow K. H. Identification of an NAD(P)H:quinone oxidoreductase polymorphism and its association with lung cancer and smoking. Pharmacogenetics. 1995 Aug;5(4):199–206. doi: 10.1097/00008571-199508000-00003. [DOI] [PubMed] [Google Scholar]
- Schulz W. A., Krummeck A., Rösinger I., Eickelmann P., Neuhaus C., Ebert T., Schmitz-Dräger B. J., Sies H. Increased frequency of a null-allele for NAD(P)H: quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics. 1997 Jun;7(3):235–239. doi: 10.1097/00008571-199706000-00008. [DOI] [PubMed] [Google Scholar]
- Shi M. M., Kugelman A., Iwamoto T., Tian L., Forman H. J. Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem. 1994 Oct 21;269(42):26512–26517. [PubMed] [Google Scholar]
- Siegel D., Bolton E. M., Burr J. A., Liebler D. C., Ross D. The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol. 1997 Aug;52(2):300–305. doi: 10.1124/mol.52.2.300. [DOI] [PubMed] [Google Scholar]
- Traver R. D., Horikoshi T., Danenberg K. D., Stadlbauer T. H., Danenberg P. V., Ross D., Gibson N. W. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 1992 Feb 15;52(4):797–802. [PubMed] [Google Scholar]
- Traver R. D., Siegel D., Beall H. D., Phillips R. M., Gibson N. W., Franklin W. A., Ross D. Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer. 1997;75(1):69–75. doi: 10.1038/bjc.1997.11. [DOI] [PMC free article] [PubMed] [Google Scholar]