Abstract
Gibberellic acid (GA3) induces invertase activity within 6 hours in Avena stem segments that are incubated in the dark at 23°. The maximum amount of promotion is about 5 times that of invertase activity in untreated segments. GA3 causes significant promotion of invertase activity at concentrations as low as 3 × 10−5 μm GA3. The increase in invertase activity elicited by GA3 between 3 × 10−5 μm and 300 μm closely parallels the growth promotion that is caused by GA3 over this concentration range. In control segments, invertase activity rises steeply during the first 6 hours of incubation, then decays slowly between 12 and 48 hours. In GA3-treated segments, the invertase activity also rises during the first 6 hours, parallel to that in control segments and continues to rise during the next 42 hours. These changes in invertase activity during 48-hour incubation periods do not parallel the changes in growth that occur in control and GA3-treated segments. Cycloheximide at 10 μg/ml abolishes all GA3-promoted growth and invertase activity in these segments. Actinomycin D at 40 and 80 μg/ml decreases GA3-promoted growth by 20% and invertase activity by 38 and 44%, respectively. The data clearly support the idea that protein synthesis is necessary for GA3-promoted growth and invertase activity in Avena stem segments.
Full text
PDF![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/396005/48b5a04b5287/plntphys00219-0044.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/396005/ae8c67f8edb6/plntphys00219-0045.png)
![31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/396005/d5892f94af92/plntphys00219-0046.png)
![32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/396005/1c871d4f3f9f/plntphys00219-0047.png)
![33](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/396005/fcd1681ac9dc/plntphys00219-0048.png)
![34](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/396005/04c167f9c09c/plntphys00219-0049.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- EDELMAN J., HALL M. A. EFFECT OF GROWTH HORMONES ON THE DEVELOPMENT OF INVERTASE ASSOCIATED WITH CELL WALLS. Nature. 1964 Jan 18;201:296–297. doi: 10.1038/201296b0. [DOI] [PubMed] [Google Scholar]
- Hatch M. D., Glasziou K. T. Sugar Accumulation Cycle in Sugar Cane. II. Relationship of Invertase Activity to Sugar Content & Growth Rate in Storage Tissue of Plants Grown in Controlled Environments. Plant Physiol. 1963 May;38(3):344–348. doi: 10.1104/pp.38.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hijmans J. C., McCarty K. S. Induction of invertase activity by hydrocortisone in chick embryo duodenum cultures. Proc Soc Exp Biol Med. 1966 Dec;123(3):633–637. doi: 10.3181/00379727-123-31563. [DOI] [PubMed] [Google Scholar]
- Kenney F. T. Turnover of rat liver tyrosine transaminase: stabilization after inhibition of protein synthesis. Science. 1967 Apr 28;156(3774):525–528. doi: 10.1126/science.156.3774.525. [DOI] [PubMed] [Google Scholar]
- Noodén L. D., Thimann K. V. EVIDENCE FOR A REQUIREMENT FOR PROTEIN SYNTHESIS FOR AUXIN-INDUCED CELL ENLARGEMENT. Proc Natl Acad Sci U S A. 1963 Aug;50(2):194–200. doi: 10.1073/pnas.50.2.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paleg L. G. Physiological Effects of Gibberellic Acid: I. On Carbohydrate Metabolism and Amylase Activity of Barley Endosperm. Plant Physiol. 1960 May;35(3):293–299. doi: 10.1104/pp.35.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. M. The influence of growth regulating substances on the development of enhanced metabolic rates in thin slices of beetroot storage tissue. Plant Physiol. 1966 Sep;41(7):1173–1178. doi: 10.1104/pp.41.7.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
- Varner J. E., Chandra G. R. HORMONAL CONTROL OF ENZYME SYNTHESIS IN BARLEY ENDOSPERM. Proc Natl Acad Sci U S A. 1964 Jul;52(1):100–106. doi: 10.1073/pnas.52.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varner J. E. Gibberellic Acid Controlled Synthesis of alpha-Amylase in Barley Endosperm. Plant Physiol. 1964 May;39(3):413–415. doi: 10.1104/pp.39.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]