Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Feb;44(2):217–224. doi: 10.1104/pp.44.2.217

Host-Pathogen Interactions: I. A Correlation Between α-Galactosidase Production and Virulence 1

Patricia D English a,2, Peter Albersheim a
PMCID: PMC396065  PMID: 16657049

Abstract

Resistance or susceptibility of Red Kidney, Pinto and Small White beans (Phaseolus vulgaris) to the alpha, beta, and gamma strains of Colletotrichum lindemuthianum was either confirmed or established. These fungal strains secrete α-galactosidase, β-galactosidase and β-xylosidase when grown on cell walls isolated from the hypocotyls of any of the above bean varieties. These enzymes effectively degrade cell walls isolated from susceptible 5-day old hypocotyls but degrade only slightly the walls isolated from resistant 18-day old hypocotyls. The amounts of the β-galactosidase and β-xylosidase secreted by the 3 fungal strains are relatively low and are approximately equivalent. The secretion of these 2 enzymes is not dependent upon the bean variety from which the hypocotyl cell walls used as a carbon source were isolated. However, the fungal strains secrete greater amounts of α-galactosidase when grown on hypocotyl cell walls isolated from susceptible plants than when grown on walls from resistant plants. Virulent isolates of the fungus, when grown on hypocotyl cell walls isolated from a susceptible plant, secrete more α-galactosidase than do attenuated (avirulent) isolates of the same fungal strain grown under the same conditions. The α-galactosidase secreted by each of the fungal strains is capable of removing galactose from the hypocotyl cell walls of each bean variety tested. Galactose is removed from the cell walls of each variety at the same rate regardless of whether the cell walls were isolated from a susceptible or resistant plant.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Nevins D. J., English P. D., Albersheim P. Changes in cell wall polysaccharides associated with growth. Plant Physiol. 1968 Jun;43(6):914–922. doi: 10.1104/pp.43.6.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Nevins D. J., English P. D., Albersheim P. The specific nature of plant cell wall polysaccharides. Plant Physiol. 1967 Jul;42(7):900–906. doi: 10.1104/pp.42.7.900. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES