Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Feb;44(2):272–276. doi: 10.1104/pp.44.2.272

Changes in Ribonucleic Acid Fractions During Maturation of Mimosa Epicotyl Tissues 1

Gregory N Brown a
PMCID: PMC396074  PMID: 5774174

Abstract

Total RNA and DNA of mimosa epicotyl tissues were extracted and the RNA fractionated into specific soluble RNAs (sRNAs) at different times during late germination. Epicotyls collected at each time contained qualitatively comparable meristematic and developing tissues, while mature tissues increased. Quantitative ratios of total RNA to DNA and total sRNAs to approximated ribosomal RNA (rRNA) varied consistently during development. Terminal nucleosides of sRNA did not vary in any consistent pattern through development. On the other hand, regular changes in quantitative ratios of specific sRNA groups were observed during development.

Full text

PDF
272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baguley B. C., Ralph R. K. Origin of transfer RNA. Biochem Biophys Res Commun. 1966 Feb 3;22(3):308–315. doi: 10.1016/0006-291x(66)90483-9. [DOI] [PubMed] [Google Scholar]
  2. DANIEL V., LITTAUER U. Z. Incorporation of terminal ribonucleotides into soluble ribonucleic acid by a purified rat liver enzyme. J Biol Chem. 1963 Jun;238:2102–2112. [PubMed] [Google Scholar]
  3. FURTH J. J., HURWITZ J., KRUG R., ALEXANDER M. The incorporation of adenylic and cytidylic acids into ribonucleic acid. J Biol Chem. 1961 Dec;236:3317–3322. [PubMed] [Google Scholar]
  4. Garen A. Sense and nonsense in the genetic code. Three exceptional triplets can serve as both chain-terminating signals and amino acid codons. Science. 1968 Apr 12;160(3824):149–159. doi: 10.1126/science.160.3824.149. [DOI] [PubMed] [Google Scholar]
  5. Goehler B., Kaneko I., Doi R. H. Regulation of a serine transfer RNA of Bacillus subtilis. Biochem Biophys Res Commun. 1966 Aug 12;24(3):466–470. doi: 10.1016/0006-291x(66)90184-7. [DOI] [PubMed] [Google Scholar]
  6. HOLLEY R. W., APGAR J., DOCTOR B. P., FARROW J., MARINI M. A., MERRILL S. H. A simplified procedure for the preparation of tyrosine and valine-acceptor fractions of yeast "soluble ribonucleic acid". J Biol Chem. 1961 Jan;236:200–202. [PubMed] [Google Scholar]
  7. Heyman T., Seror S., Desseaux B., Legault-Demare J. Valine transfer ribonucleic acid. I. Chromatographic study of valine tRNA modifications during Bacillus subtilis growth. Biochim Biophys Acta. 1967;145(3):596–604. doi: 10.1016/0005-2787(67)90118-9. [DOI] [PubMed] [Google Scholar]
  8. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  9. Kano-Sueoka T., Sueoka N. Modification of leucyl-sRNA after bacteriophage infection. J Mol Biol. 1966 Sep;20(1):183–209. doi: 10.1016/0022-2836(66)90124-0. [DOI] [PubMed] [Google Scholar]
  10. Kelmers A. D., Novelli G. D., Stulberg M. P. Separation of transfer ribonucleic acids by reverse phase chromatography. J Biol Chem. 1965 Oct;240(10):3979–3983. [PubMed] [Google Scholar]
  11. Key J. L., Shannon J. C. Enhancement by Auxin of Ribonucleic Acid Synthesis in Excised Soybean Hypocotyl Tissue. Plant Physiol. 1964 May;39(3):360–364. doi: 10.1104/pp.39.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kwan C. N., Apirion D., Schlessinger D. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Biochemistry. 1968 Jan;7(1):427–433. doi: 10.1021/bi00841a055. [DOI] [PubMed] [Google Scholar]
  13. LAZZARINI R. A., PETERKOFSKY A. THE CHARACTERIZATION OF A NEW SPECIES OF LEUCYL-SRNA FORMED DURING METHIONINE DEPRIVATION OF ESCHERICHIA COLI WITH RELAXED CONTROL. Proc Natl Acad Sci U S A. 1965 Mar;53:549–556. doi: 10.1073/pnas.53.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lebowitz P., Ipata P. L., Makman M. H., Richards H. H., Cantoni G. L. Resolution of cytidine- and adenosine- terminal transfer ribonucleic acids. Biochemistry. 1966 Nov;5(11):3617–3625. doi: 10.1021/bi00875a034. [DOI] [PubMed] [Google Scholar]
  16. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  17. Pogo B. G., Ubero I. R., Pogo A. O. Nucleic acid and protein content of Euglena gracilis in different growth media. Exp Cell Res. 1966 Apr;42(1):58–66. doi: 10.1016/0014-4827(66)90319-3. [DOI] [PubMed] [Google Scholar]
  18. SUEOKA N., KANO-SUEOKA T. A SPECIFIC MODIFICATION OF LEUCYL-SRNA OF ESCHERICHIA COLI AFTER PHAGE T2 INFECTION. Proc Natl Acad Sci U S A. 1964 Dec;52:1535–1540. doi: 10.1073/pnas.52.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sells B. H. Ribosome formation from ribonucleic acid accumulated during puromycin treatment: influence of proflavin. Biochim Biophys Acta. 1966 Mar 21;114(3):565–577. doi: 10.1016/0005-2787(66)90105-5. [DOI] [PubMed] [Google Scholar]
  20. TYNER E. P., HEIDELBERGER C., LEPAGE G. A. Intracellular distribution of radioactivity in nucleic acid nucleotides and proteins following simultaneous administration of P32 and glycine-2-C14. Cancer Res. 1953 Feb;13(2):186–203. [PubMed] [Google Scholar]
  21. Vold B. S., Sypherd P. S. Modification in transfer RNA during the differentiation of wheat seedlings. Proc Natl Acad Sci U S A. 1968 Feb;59(2):453–458. doi: 10.1073/pnas.59.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waters L. C., Novelli G. D. A new change in leucine transfer RNA observed in Escherichia coli infected with bacteriophage T2. Proc Natl Acad Sci U S A. 1967 Apr;57(4):979–985. doi: 10.1073/pnas.57.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES