Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Mar;44(3):319–325. doi: 10.1104/pp.44.3.319

Seed Germination Studies. III. Properties of a Cell-free Amino Acid Incorporating System From Pea Cotyledons; Possible Origin of Cotyledonary α-Amylase 1

Richard R Swain a,2, Eugene E Dekker a
PMCID: PMC396085  PMID: 5775202

Abstract

Pea cotyledonary α-amylase increases dramatically both in specific activity and total activity between days 7 to 10 when germination occurs in the dark. This enzymatic activity does not seem to appear as a consequence of release or formation of an activator, removal of an inhibitor, dissociation of an inactive amylase complex, or proteolytic decomposition of a zymogen precursor. The possibility remains that the α-amylase is newly synthesized during germination. The preparation and properties of a cell-free protein-synthesizing system from germinating pea cotyledons is described; polyuridylic acid must be added for l-phenylalanine incorporation. Active microsomal preparations can be obtained from cotyledons germinated 10 days.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker G. R., Hollinshead J. A. Nucleotide metabolism in germinating seeds. The ribonucleic acid of Pisum arvense. Biochem J. 1964 Oct;93(1):78–83. doi: 10.1042/bj0930078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. P., Wray J. L. Correlated changes of some enzyme activities and cofactor and substrate contents of pea cotyledon tissue during germination. Biochem J. 1968 Jul;108(3):437–444. doi: 10.1042/bj1080437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherry J. H. Nucleic Acid, Mitochondria, & Enzyme Changes in Cotyledons of Peanut Seeds during Germination. Plant Physiol. 1963 Jul;38(4):440–446. doi: 10.1104/pp.38.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chrispeels M. J., Varner J. E. Gibberellic Acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 1967 Mar;42(3):398–406. doi: 10.1104/pp.42.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gientka-Rychter A., Cherry J. H. De Novo Synthesis of Isocitritase in Peanut (Arachis hypogaea L.) Cotyledons. Plant Physiol. 1968 Apr;43(4):653–659. doi: 10.1104/pp.43.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LETT J. T., TAKAHASHI W. N. Anomalies in protein synthesis: the release of soluble proteins from plant ribosomes. Arch Biochem Biophys. 1962 Mar;96:569–574. doi: 10.1016/0003-9861(62)90338-7. [DOI] [PubMed] [Google Scholar]
  7. LETT J. T., TAKAHASHI W. N., BIRNSTIEL M. FURTHER OBSERVATIONS CONCERNING SYNTHETIC SYSTEMS WITH PEA RIBOSOMES. Biochim Biophys Acta. 1963 Sep 17;76:105–109. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Longo C. P. Evidence for de novo synthesis of isocitratase and malate synthesis in germinating peanut cotyledons. Plant Physiol. 1968 Apr;43(4):660–664. doi: 10.1104/pp.43.4.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MARCUS A., FEELEY J. PROTEIN SYNTHESIS IN IMBIBED SEEDS. II. POLYSOME FORMATION DURING IMBIBITION. J Biol Chem. 1965 Apr;240:1675–1680. [PubMed] [Google Scholar]
  11. MOLDAVE K. NUCLEIC ACIDS AND PROTEIN BIOSYNTHESIS. Annu Rev Biochem. 1965;34:419–448. doi: 10.1146/annurev.bi.34.070165.002223. [DOI] [PubMed] [Google Scholar]
  12. Marcus A., Feeley J. ACTIVATION OF PROTEIN SYNTHESIS IN THE IMBIBITION PHASE OF SEED GERMINATION. Proc Natl Acad Sci U S A. 1964 Jun;51(6):1075–1079. doi: 10.1073/pnas.51.6.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RAACKE I. D. Studies on protein synthesis with ribonucleoprotein particles from pea seedlings. Biochim Biophys Acta. 1959 Jul;34:1–9. doi: 10.1016/0006-3002(59)90227-6. [DOI] [PubMed] [Google Scholar]
  14. Swain R. R., Dekker E. E. Seed germination studies. I. Purification and properties of an alpha-amylase from the cotyledons of germinating peas. Biochim Biophys Acta. 1966 Jul 6;122(1):75–86. doi: 10.1016/0926-6593(66)90092-0. [DOI] [PubMed] [Google Scholar]
  15. Swain R. R., Dekker E. E. Seed germination studies. II. Pathways for starch degradation in germinating pea seedlings. Biochim Biophys Acta. 1966 Jul 6;122(1):87–100. doi: 10.1016/0926-6593(66)90093-2. [DOI] [PubMed] [Google Scholar]
  16. WEBSTER G., WHITMAN S. L., HEINTZ R. L. Heterogeneity of pea ribosomes with regard to protein synthesis. Exp Cell Res. 1962 Mar;26:595–597. doi: 10.1016/0014-4827(62)90166-0. [DOI] [PubMed] [Google Scholar]
  17. YOUNG J. L., VARNER J. E. Enzyme synthesis in the cotyledons of germinating seeds. Arch Biochem Biophys. 1959 Sep;84:71–78. doi: 10.1016/0003-9861(59)90555-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES