Abstract
The formation of active O2 evolving centers following addition of Mn2+ to Mn deficient Anacystis nidulans cells yielded an estimate of 6 to 12 Mn atoms associated with each O2 evolving reaction center. Restoration of activity upon addition of Mn ions is affected in 3 ways: (1) Stimulation of the uptake of exogenous Mn into the cells—this uptake occurs in darkness, but is enhanced 5 to 10 fold by light; a high concentration of DCMU (1 × 10−5m) decreases this light enhanced influx no more than 50 to 75%; (2) Photoreactivation of the O2 evolving centers, after excess Mn has been accumulated in the cells essentially no increase in Hill activity is observed unless the cells are illuminated. This photoreactivation is fully inhibited by 10−6m DCMU and partially by benzoquinone. The Q10 of photoreactivation proper is close to 1; (3) Photoinhibition of the activation—photoreactivation occurs most effectively in weak intensities (< one-fiftieth photosynthetic saturation in normal cells). Apparently at higher intensities an inhibitory photoprocess is overriding. This inhibition proved reversible. The photoreactivation leads to new stable O2 evolving centers as evidenced by an increase in the rate at saturating intensity, quantum yield, and the O2 gush.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BISHOP N. I. The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim Biophys Acta. 1958 Jan;27(1):205–206. doi: 10.1016/0006-3002(58)90313-5. [DOI] [PubMed] [Google Scholar]
- Bishop N. I., Nakamura H., Blatt J., Vennesland B. Kinetics and Properties of Cytochrome c Photooxidase of Spinach. Plant Physiol. 1959 Sep;34(5):551–557. doi: 10.1104/pp.34.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheniae G. M., Martin I. F. Photoreactivation of manganese catalyst in photosynthetic oxygen evolution. Biochem Biophys Res Commun. 1967 Jul 10;28(1):89–95. doi: 10.1016/0006-291x(67)90411-1. [DOI] [PubMed] [Google Scholar]
- Cheniae G. M., Martin I. F. Site of manganese function in photosynthesis. Biochim Biophys Acta. 1968 May 28;153(4):819–837. doi: 10.1016/0005-2728(68)90009-1. [DOI] [PubMed] [Google Scholar]
- Cheniae G. M., Martin I. F. Studies on the function of manganese in photosynthesis. Brookhaven Symp Biol. 1966;19:406–417. [PubMed] [Google Scholar]
- Eyster C., Brown T. E., Tanner H. A., Hood S. L. Manganese Requirement with Respect to Growth, Hill Reaction and Photosynthesis. Plant Physiol. 1958 Jul;33(4):235–241. doi: 10.1104/pp.33.4.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerhardt B., Wiessner W. On the light-dependent reactivation of photosynthetic activity by manganese. Biochem Biophys Res Commun. 1967 Sep 27;28(6):958–964. doi: 10.1016/0006-291x(67)90073-3. [DOI] [PubMed] [Google Scholar]
- HALL D. O., ARNON D. I. Photosynthetic phosphorylation above and below 0 degree C. Proc Natl Acad Sci U S A. 1962 May 15;48:833–839. doi: 10.1073/pnas.48.5.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEYTLER P. G., PRICHARD W. W. A new class of uncoupling agents--carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun. 1962 May 4;7:272–275. doi: 10.1016/0006-291x(62)90189-4. [DOI] [PubMed] [Google Scholar]
- Homann P. H. Studies on the manganese of the chloroplast. Plant Physiol. 1967 Jul;42(7):997–1007. doi: 10.1104/pp.42.7.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JAGENDORF A. T., AVRON M. Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J Biol Chem. 1958 Mar;231(1):277–290. [PubMed] [Google Scholar]
- Joliot P. Cinétiques des réactions liées a l'émission d'oxygène photosynthétique. Biochim Biophys Acta. 1965 May 25;102(1):116–134. [PubMed] [Google Scholar]
- Jones L. W., Kok B. Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol. 1966 Jun;41(6):1037–1043. doi: 10.1104/pp.41.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KESSLER E. On the role of manganese in the oxygen-evolving system of photosynthesis. Arch Biochem Biophys. 1955 Dec;59(2):527–529. doi: 10.1016/0003-9861(55)90519-1. [DOI] [PubMed] [Google Scholar]
- Kok B., Rurainski H. J., Harmon E. A. Photooxidation of Cytochromes c, f, and Plastocyanin by Detergent Treated Chloroplasts. Plant Physiol. 1964 Jul;39(4):513–520. doi: 10.1104/pp.39.4.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACROBBIE E. A. THE NATURE OF THE COUPLING BETWEEN LIGHT ENERGY AND ACTIVE ION TRANSPORT IN NITELLA TRANSLUCENS. Biochim Biophys Acta. 1965 Jan 25;94:64–73. doi: 10.1016/0926-6585(65)90008-7. [DOI] [PubMed] [Google Scholar]
- Neumann J., Jagendorf A. T. Dinitrophenol as an uncoupler of photosynthetic phosphorylation. Biochem Biophys Res Commun. 1964 Aug 11;16(6):562–567. doi: 10.1016/0006-291x(64)90193-7. [DOI] [PubMed] [Google Scholar]
- SIRONVAL C., KANDLER O. Photoxidation processes in normal green Chlorella cells. I. The bleaching process. Biochim Biophys Acta. 1958 Aug;29(2):359–368. doi: 10.1016/0006-3002(58)90195-1. [DOI] [PubMed] [Google Scholar]
- SPENCER D., POSSINGHAM J. V. The effect of manganese deficiency on photophosphorylation and the oxygen-evolving sequence in spinach chloroplasts. Biochim Biophys Acta. 1961 Sep 16;52:379–381. doi: 10.1016/0006-3002(61)90689-8. [DOI] [PubMed] [Google Scholar]
- Teichler-Zallen D., Hoch G. Cyclic electron transport in algae. Arch Biochem Biophys. 1967 Apr;120(1):227–230. doi: 10.1016/0003-9861(67)90620-0. [DOI] [PubMed] [Google Scholar]
- WIESSNER W. QUANTUM REQUIREMENT FOR ACETATE ASSIMILATION AND ITS SIGNIFICANCE FOR QUANTUM MEASUREMENTS IN PHOTOPHOSPHORYLATION. Nature. 1965 Jan 2;205:56–57. doi: 10.1038/205056a0. [DOI] [PubMed] [Google Scholar]
