Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Mar;44(3):442–446. doi: 10.1104/pp.44.3.442

Sterol Biosynthesis in Sub-Cellular Particles of Higher Plants 1

F F Knapp a,2, R T Aexel a, H J Nicholas a
PMCID: PMC396105  PMID: 16657081

Abstract

Mevalonic acid-2-14C was administered to cut stems of bean seedlings (Phaseolus vulgaris L.) for time intervals varying from 20 min to 24 hr. The plants were homogenized in a pH 7.8 tris-sucrose buffer and the homogenates separated into chloroplast, mitochondrial, microsomal, and supernatant fractions by means of differential centrifugation. The distribution of radioactivity into non-saponifiable material in each of the fractions was then determined. After short incubation periods labeled squalene was localized in the supernatant fraction. Labeled sterol was limited at all incubation periods to the microsomal and supernatant fractions. The data presented clearly implicate the microsomal and supernatant fractions in sterol biosynthesis in higher plants.

Full text

PDF
442

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOCH K., CHAYKIN S., PHILLIPS A. H., DE WAARD A. Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J Biol Chem. 1959 Oct;234:2595–2604. [PubMed] [Google Scholar]
  2. BUCHER N. L., MCGARRAHAN K. The biosynthesis of cholesterol from acetate-1-C14 by cellular fractions of rat liver. J Biol Chem. 1956 Sep;222(1):1–15. [PubMed] [Google Scholar]
  3. Chesterton C. J. Distribution of cholesterol precursors and other lipids among rat liver intracellular structures. J Biol Chem. 1968 Mar 25;243(6):1147–1151. [PubMed] [Google Scholar]
  4. Corey E. J., Ortiz de Montellano P. R. Enzymic synthesis of beta-amyrin from 2,3-oxidosqualene. J Am Chem Soc. 1967 Jun 21;89(13):3362–3363. doi: 10.1021/ja00989a055. [DOI] [PubMed] [Google Scholar]
  5. Dickinson D. B., Hanson J. B. Comparison of Mitochondria from Tomato Fruits at Various Stages of Ripeness. Plant Physiol. 1965 Jan;40(1):161–165. doi: 10.1104/pp.40.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GAYLOR J. L. Biosynthesis of skin sterols. III. Conversion of squalene to sterols by rat skin. J Biol Chem. 1963 May;238:1643–1655. [PubMed] [Google Scholar]
  7. Goad L. J., Goodwin T. W. The biosynthesis of sterols in higher plants. Biochem J. 1966 Jun;99(3):735–746. doi: 10.1042/bj0990735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graebe J. E. Isoprenoid biosynthesis in a cell-free system from pea shoots. Science. 1967 Jul 7;157(3784):73–75. doi: 10.1126/science.157.3784.73. [DOI] [PubMed] [Google Scholar]
  9. Klein H. P. Nature of Particles Involved in Lipid Synthesis in Yeast. J Bacteriol. 1965 Jul;90(1):227–234. doi: 10.1128/jb.90.1.227-234.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NANDI D. L., PORTER J. W. THE ENZYMATIC SYNTHESIS OF GERANYL GERANYL PYROPHOSPHATE BY ENZYMES OF CARROT ROOT AND PIG LIVER. Arch Biochem Biophys. 1964 Apr;105:7–19. doi: 10.1016/0003-9861(64)90230-9. [DOI] [PubMed] [Google Scholar]
  11. NICHOLAS H. J. Biosynthesis of beta-sitosterol and pentacyclic triterpenes of Salvia officinalis. J Biol Chem. 1962 May;237:1476–1480. [PubMed] [Google Scholar]
  12. Rees H. H., Mercer E. I., Goodwin T. W. The stereospecific biosynthesis of plant sterols and alpha- and beta-amyrin. Biochem J. 1966 Jun;99(3):726–734. doi: 10.1042/bj0990726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SPERRY W. M., WEBB M. The effect of increasing age on serum cholesterol concentration. J Biol Chem. 1950 Nov;187(1):107–110. [PubMed] [Google Scholar]
  14. Williamson I. P., Kekwick R. G. The formation of 5-phosphomevalonate by mevalonate kinase in Hevea brasiliensis latex. Biochem J. 1965 Sep;96(3):862–871. doi: 10.1042/bj0960862. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES