Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Apr;44(4):527–534. doi: 10.1104/pp.44.4.527

Energy and Electron Transfer Systems of Chlamydomonas reinhardi. I. Photosynthetic and Respiratory Cytochrome Systems of the Pale Green Mutant 1

Tetsuo Hiyama a, Mitsuo Nishimura a, Britton Chance a
PMCID: PMC396121  PMID: 16657096

Abstract

The role of cytochromes in photosynthetic electron transfer system has been studied using the pale green mutant of Chlamydomonas reinhardi (ATCC 18302). The existence of cytochromes b563 and f is confirmed, while no significant amount of ascorbate-reducible cytochrome b559 is detected in this mutant. The presence of cytochrome c and a small amount of a-type cytochrome is determined in these cells.

Light-induced oxidation of cytochrome b563 is eliminated by oxygen-induced oxidation, and oxygen-induced oxidation is greatly diminished under illumination. Antimycin A diminishes the oxygen-induced oxidation of cytochrome b563, but does not affect light-induced oxidation. In the aerobic state in the presence of 2-heptyl-4-hydroxyquinoline-N-oxide, cytochrome b563 is reduced by illumination with far red light; this reduction is not inhibited by 3-(4′-chlorophenyl)-1,1-dimethylurea.

A tentative scheme for the electron transfer system in chloroplasts, which involves a cyclic pathway via cytochrome b563 and its interaction with oxygen, is proposed.

Full text

PDF
527

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boardman N. K., Anderson J. M. Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim Biophys Acta. 1967 Jul 5;143(1):187–203. doi: 10.1016/0005-2728(67)90120-x. [DOI] [PubMed] [Google Scholar]
  2. Chance B., Sager R. Oxygen and Light Induced Oxidations of Cytochrome, Flavoprotein, and Pyridine Nucleotide in a Chlamydomonas Mutant. Plant Physiol. 1957 Nov;32(6):548–561. doi: 10.1104/pp.32.6.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cramer W. A., Butler W. L. Light-induced absorbance changes of two cytochrome b components in the electron-transport system of spinach chloroplasts. Biochim Biophys Acta. 1967 Sep 6;143(2):332–339. doi: 10.1016/0005-2728(67)90087-4. [DOI] [PubMed] [Google Scholar]
  4. ESTABROOK R. W. The low temperature spectra of hemoproteins. I. Apparatus and its application to a study of cytochrome c. J Biol Chem. 1956 Dec;223(2):781–794. [PubMed] [Google Scholar]
  5. GOLDBERGER R., SMITH A. L., TISDALE H., BOMSTEIN R. Studies of the electron transport system. 37. Isolation and properties of mammalian cytochrome b. J Biol Chem. 1961 Oct;236:2788–2793. [PubMed] [Google Scholar]
  6. Hildreth W. W. Laser-activated electron transport in a Chlamydomonas mutant. Plant Physiol. 1968 Mar;43(3):303–312. doi: 10.1104/pp.43.3.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hind G., Olson J. M. Light-induced changes in cytochrome b 6 in spinach chloroplasts. Brookhaven Symp Biol. 1966;19:188–194. [PubMed] [Google Scholar]
  8. JAMES W. O., LEECH R. M. THE CYTOCHROMES OF ISOLATED CHLOROPLASTS. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:13–24. doi: 10.1098/rspb.1964.0027. [DOI] [PubMed] [Google Scholar]
  9. Levine R. P., Gorman D. S. Photosynthetic electron transport chain of Chlamydomonas reinhardi. 3. Light-induced absorbance changes in chloroplast fragments of the wild type and mutant strains. Plant Physiol. 1966 Oct;41(8):1293–1300. doi: 10.1104/pp.41.8.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morrison M., Horie S. Determination of heme a concentration in cytochrome preparations by hemochromogen method. Anal Biochem. 1965 Jul;12(1):77–82. doi: 10.1016/0003-2697(65)90144-2. [DOI] [PubMed] [Google Scholar]
  11. Nishimura M. Oxidation-reduction reactions of cytochromes in red algae. Brookhaven Symp Biol. 1966;19:132–142. [PubMed] [Google Scholar]
  12. Panque A., Aparicio P. J., Catalina L., Losada M. Enzymatic reduction of nitrate with flavin nucleotides reduced by a new chloroplast NADH-specific diaphorase. Biochim Biophys Acta. 1968 Jul 16;162(1):149–151. doi: 10.1016/0005-2728(68)90222-3. [DOI] [PubMed] [Google Scholar]
  13. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  14. SMILLIE R. M., LEVINE R. P. THE PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN OF CHLAMYDOMONAS REINHARDI. II. COMPONENTS OF THE TRIPHOSPHOPYRIDINE NUCLEOTIDE-REDUCTIVE PATHWAY IN WILD-TYPE AND MUTANT STRAINS. J Biol Chem. 1963 Dec;238:4058–4062. [PubMed] [Google Scholar]
  15. Zanetti G., Forti G. Studies on the triphosphopyridine nucleotide-cytochrome f reductase of chloroplasts. J Biol Chem. 1966 Jan 25;241(2):279–285. [PubMed] [Google Scholar]
  16. van GELDER B., SLATER E. C. The extinction coefficient of cytochrome c. Biochim Biophys Acta. 1962 Apr 23;58:593–595. doi: 10.1016/0006-3002(62)90073-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES