Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Jun;44(6):821–825. doi: 10.1104/pp.44.6.821

Action of Phytochrome During Prechilling of Amaranthus retroflexus L. Seeds

R B Taylorson a, S B Hendricks b
PMCID: PMC396170  PMID: 16657136

Abstract

Dark germination of Amaranthus retroflexus L. seeds at 35° increased after several days of prechilling at 20° or lower. Irradiation with far-red light for short periods during the early hours of a prechilling period at 10° inhibited subsequent dark germination at 35°. The inhibition was completely reversible with red light. Far-red irradiation in the latter part of the prechilling period was less effective. Increased dark germination of A. retroflexus seeds following a prechilling period at 20° or less is attributed to action of preexistent PFR, the far-red absorbing form of phytochrome, within the seeds. Inactivation of PFR was found to proceed ca. 4 times more rapidly at 25° than at 20°. Failure of imbibition temperatures above 20° to increase dark germination of A. retroflexus seeds is attributed to the rapid thermal reversion of pre-existent PFR. We suggest that the action of prechilling (layering) on many other seed kinds arises in a similar way.

Full text

PDF
821

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ikuma H., Thimann K. V. Analysis of Germination Processes of Lettuce Seed by Means of Temperature and Anaerobiosis. Plant Physiol. 1964 Sep;39(5):756–767. doi: 10.1104/pp.39.5.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Mancinelli A. L., Yaniv Z., Smith P. Phytochrome and Seed Germination. I. Temperature Dependence and Relative P(FR) Levels in the Germination of Dark-germinating Tomato Seeds. Plant Physiol. 1967 Mar;42(3):333–337. doi: 10.1104/pp.42.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Roth-Bejerano N., Koller D., Negbi M. Mediation of phytochrome in the inductive action of low temperature on dark germination of lettuce seed at supra-optimal temperature. Plant Physiol. 1966 Jun;41(6):962–964. doi: 10.1104/pp.41.6.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Scheibe J., Lang A. Lettuce Seed Germination: Evidence for a Reversible Light-Induced Increase in Growth Potential and for Phytochrome Mediation of the Low Temperature Effect. Plant Physiol. 1965 May;40(3):485–492. doi: 10.1104/pp.40.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Tobin E. M., Briggs W. R. Phytochrome in Embryos of Pinus palustris. Plant Physiol. 1969 Jan;44(1):148–150. doi: 10.1104/pp.44.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES