Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Jun;44(6):849–853. doi: 10.1104/pp.44.6.849

Nitrogen Metabolism of Lemna minor. II. Enzymes of Nitrate Assimilation and Some Aspects of Their Regulation 1

K W Joy a
PMCID: PMC396175  PMID: 5799047

Abstract

In L. minor grown in sterile culture, the primary enzymes of nitrate assimilation, nitrate reductase (NR), nitrite reductase (NiR) and glutamate dehydrogenase (GDH) change in response to nitrogen source. NR and NiR levels are low when grown on amino acids (hydrolyzed casein) or ammonia; both enzymes are rapidly induced on addition of nitrate, while addition of nitrite induces NiR only. Ammonia represses the nitrate induced synthesis of both NR and NiR.

NADH dependent GDH activity is low when grown on amino acids and high when grown on nitrate or ammonia, but the activities of NADPH dependent GDH and Alanine dehydro-genase (AIDH) are much less affected by nitrogen source. NADH-GDH and AIDH are induced by ammonia, and it is suggested that these enzymes are involved in primary nitrogen assimilation.

Full text

PDF
849

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Filner P. Regulation of nitrate reductase in cultured tobacco cells. Biochim Biophys Acta. 1966 May 5;118(2):299–310. doi: 10.1016/s0926-6593(66)80038-3. [DOI] [PubMed] [Google Scholar]
  2. Ingle J. The regulation of activity of the enzymes involved in the assimilation of nitrate by higher plants. Biochem J. 1966 Sep;100(3):577–588. doi: 10.1042/bj1000577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Joy K. W. Nitrogen metabolism of Lemna minor. I. Growth, nitrogen sources and amino acid inhibition. Plant Physiol. 1969 Jun;44(6):845–848. doi: 10.1104/pp.44.6.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Schrader L. E., Beevers L., Hageman R. H. Differential effects of chloramphenicol on the induction of nitrate and nitrite reductase in green leaf tissue. Biochem Biophys Res Commun. 1967 Jan 10;26(1):14–17. doi: 10.1016/0006-291x(67)90244-6. [DOI] [PubMed] [Google Scholar]
  5. Schrader L. E., Hageman R. H. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites. Plant Physiol. 1967 Dec;42(12):1750–1756. doi: 10.1104/pp.42.12.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES