Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Jul;44(7):1040–1044. doi: 10.1104/pp.44.7.1040

Oligomycin Inhibition of Phosphate Uptake and ATP Labeling in Excised Maize Roots 1

Carolyn Bledsoe a, C V Cole a, Cleon Ross a
PMCID: PMC396211  PMID: 16657154

Abstract

ATP labeling by newly absorbed 32P in excised maize roots was reduced 34% by the presence of oligomycin during a 4-min uptake period with no reduction in rate of phosphorus absorption. Longer exposure to oligomycin, during pretreatment periods or longer uptake periods, reduced phosphorus absorption and further reduced ATP synthesis. In these tissues it appears that oligomycin inhibits ATP production at the mitochondria, that ATP is the energy source for phosphorus uptake at the plasmalemma, and that a depletion in the ATP supply causes a reduced rate of uptake.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Eckermann G., Grant M., Robertson R. N. Salt accumulation and adenosine triphosphate in carrot xylem tissue. Proc Natl Acad Sci U S A. 1966 Mar;55(3):560–564. doi: 10.1073/pnas.55.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown H. D., Altschul A. M. Glycoside-sensitive ATPase from Arachis hypogaea. Biochem Biophys Res Commun. 1964 Apr 22;15(5):479–483. doi: 10.1016/0006-291x(64)90490-5. [DOI] [PubMed] [Google Scholar]
  3. Cole C. V., Ross C. Extraction, separation, and quantitative estimation of soluble nucleotides and sugar phosphates in plant tissues. Anal Biochem. 1966 Dec;17(3):526–539. doi: 10.1016/0003-2697(66)90188-6. [DOI] [PubMed] [Google Scholar]
  4. GLYNN I. M. TRANSPORT ADENOSINETRIPHOSPHATASE' IN ELECTRIC ORGAN. THE RELATION BETWEEN ION TRANSPORT AND OXIDATIVE PHOSPHORYLATION. J Physiol. 1963 Nov;169:452–465. doi: 10.1113/jphysiol.1963.sp007272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hagen C. E., Hopkins H. T. Ionic Species in Orthophosphate Absorption by Barley Roots. Plant Physiol. 1955 May;30(3):193–199. doi: 10.1104/pp.30.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hopkins H. T. Absorption of Ionic Species of Orthophosphate by Barley Roots: Effects of 2,4-Dinitrophenol and Oxygen Tension. Plant Physiol. 1956 Mar;31(2):155–161. doi: 10.1104/pp.31.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jackson P. C., Hendricks S. B., Vasta B. M. Phosphorylation by Barley Root Mitochondria & Phosphate Absorption by Barley Roots. Plant Physiol. 1962 Jan;37(1):8–17. doi: 10.1104/pp.37.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kenefick D. G., Hanson J. B. The site of oligomycin action in corn mitochondria. Biochem Biophys Res Commun. 1966 Sep 22;24(6):899–902. doi: 10.1016/0006-291x(66)90334-2. [DOI] [PubMed] [Google Scholar]
  9. McClurkin I. T., McClurkin D. C. Cytochemical demonstration of a sodium-activated and a potassium-activated adenosine triphosphatase in loblolly pine seedling root tips. Plant Physiol. 1967 Aug;42(8):1103–1110. doi: 10.1104/pp.42.8.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smith F. A. Active phosphate uptake by Nitella translucens. Biochim Biophys Acta. 1966 Sep 5;126(1):94–99. doi: 10.1016/0926-6585(66)90040-9. [DOI] [PubMed] [Google Scholar]
  11. WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES