Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Jul;44(7):1058–1062. doi: 10.1104/pp.44.7.1058

Presence of ADP-Glucose Pyrophosphorylase in Shrunken-2 and Brittle-2 Mutants of Maize Endosperm 1

David B Dickinson a,2, Jack Preiss a
PMCID: PMC396214  PMID: 16657157

Abstract

ADP-Glucose pyrophosphorylase activity has been detected in relatively low amounts in the embryos and endosperms of sh2 and bt2 mutant maize seeds. The total enzyme activities in sh2 and bt2 were about 12% and 17% respectively, of that found in starchy maize seeds (Dekalb 805). The ADP-glucose pyrophosphorylases from the starchy and mutant maize seeds were activated by 3-phosphoglycerate. However, the extent of the activation of the sh2 enzyme was not as great as that observed with the bt2 and Dekalb 805 enzymes. The low levels of ADP-glucose pyrophosphorylase activity in the maize mutants correlate well with the low levels of starch found in the endosperm of these mutants.

Full text

PDF
1058

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Creech R G. Genetic Control of Carbohydrate Synthesis in Maize Endosperm. Genetics. 1965 Dec;52(6):1175–1186. doi: 10.1093/genetics/52.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dickinson D. B., Preiss J. ADP glucose pyrophosphorylase from maize endosperm. Arch Biochem Biophys. 1969 Mar;130(1):119–128. doi: 10.1016/0003-9861(69)90017-4. [DOI] [PubMed] [Google Scholar]
  3. GHOSH H. P., PREISS J. THE BIOSYNTHESIS OF STARCH IN SPINACH CHLOROPLASTS. J Biol Chem. 1965 Feb;240:960–962. [PubMed] [Google Scholar]
  4. Ghosh H. P., Preiss J. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem. 1966 Oct 10;241(19):4491–4504. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. SHEN L., PREISS J. BIOSYNTHESIS OF BACTERIAL GLYCOGEN. I. PURIFICATION AND PROPERTIES OF THE ADENOSINE DIPHOSPHOGLUCOSE PYROPHOSPHORYLASE OF ARTHROBACTER SPECIES NRRL B1973. J Biol Chem. 1965 Jun;240:2334–2340. [PubMed] [Google Scholar]
  7. Sanwal G. G., Greenberg E., Hardie J., Cameron E. C., Preiss J. Regulation of starch biosynthesis in plant leaves: activation and inhibition of ADPglucose pyrophosphorylase. Plant Physiol. 1968 Mar;43(3):417–427. doi: 10.1104/pp.43.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sanwal G. G., Preiss J. Biosynthesis of starch in Chlorella pyrenoidosa. II. Regulation of ATP: alpha-D-glucose 1-phosphate adenyl transferase (ADP-glucose pyrophosphorylase) by inorganic phosphate and 3-phosphoglycerate. Arch Biochem Biophys. 1967 Mar;119(1):454–469. doi: 10.1016/0003-9861(67)90477-8. [DOI] [PubMed] [Google Scholar]
  9. Tsai C. Y., Nelson O. E. Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity. Science. 1966 Jan 21;151(3708):341–343. doi: 10.1126/science.151.3708.341. [DOI] [PubMed] [Google Scholar]
  10. Vidra J. D., Loerch J. D. A study of pyrophosphorylase activities in maize endosperm. Biochim Biophys Acta. 1968 Jul 9;159(3):551–553. doi: 10.1016/0005-2744(68)90143-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES