Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 16;93(8):3428–3433. doi: 10.1073/pnas.93.8.3428

Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat.

K E Saatman 1, H Murai 1, R T Bartus 1, D H Smith 1, N J Hayward 1, B R Perri 1, T K McIntosh 1
PMCID: PMC39625  PMID: 8622952

Abstract

Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 min postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n= 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295-treated injured animals showed significant neuromotor deficits (P< 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P< 0.01). However, brain-injured, AK295-treated animals showed markedly improved motor scores (P<0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P< 0.001), which was significantly attenuated by AK295 treatment (P< 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.

Full text

PDF
3428

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai A., Kessler M., Lee K., Lynch G. Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices. Brain Res. 1990 Nov 5;532(1-2):63–68. doi: 10.1016/0006-8993(90)91742-y. [DOI] [PubMed] [Google Scholar]
  2. Arlinghaus L., Mehdi S., Lee K. S. Improved posthypoxic recovery with a membrane-permeable calpain inhibitor. Eur J Pharmacol. 1991 Dec 10;209(1-2):123–125. doi: 10.1016/0014-2999(91)90022-i. [DOI] [PubMed] [Google Scholar]
  3. Bartus R. T., Baker K. L., Heiser A. D., Sawyer S. D., Dean R. L., Elliott P. J., Straub J. A. Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab. 1994 Jul;14(4):537–544. doi: 10.1038/jcbfm.1994.67. [DOI] [PubMed] [Google Scholar]
  4. Bartus R. T., Elliott P. J., Hayward N. J., Dean R. L., Harbeson S., Straub J. A., Li Z., Powers J. C. Calpain as a novel target for treating acute neurodegenerative disorders. Neurol Res. 1995 Aug;17(4):249–258. doi: 10.1080/01616412.1995.11740322. [DOI] [PubMed] [Google Scholar]
  5. Bartus R. T., Hayward N. J., Elliott P. J., Sawyer S. D., Baker K. L., Dean R. L., Akiyama A., Straub J. A., Harbeson S. L., Li Z. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke. 1994 Nov;25(11):2265–2270. doi: 10.1161/01.str.25.11.2265. [DOI] [PubMed] [Google Scholar]
  6. Billger M., Wallin M., Karlsson J. O. Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium. 1988 Feb;9(1):33–44. doi: 10.1016/0143-4160(88)90036-x. [DOI] [PubMed] [Google Scholar]
  7. Bullock R., Fujisawa H. The role of glutamate antagonists for the treatment of CNS injury. J Neurotrauma. 1992 May;9 (Suppl 2):S443–S462. [PubMed] [Google Scholar]
  8. Choi D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988 Oct;11(10):465–469. doi: 10.1016/0166-2236(88)90200-7. [DOI] [PubMed] [Google Scholar]
  9. Cortez S. C., McIntosh T. K., Noble L. J. Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res. 1989 Mar 20;482(2):271–282. doi: 10.1016/0006-8993(89)91190-6. [DOI] [PubMed] [Google Scholar]
  10. Dixon C. E., Lyeth B. G., Povlishock J. T., Findling R. L., Hamm R. J., Marmarou A., Young H. F., Hayes R. L. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987 Jul;67(1):110–119. doi: 10.3171/jns.1987.67.1.0110. [DOI] [PubMed] [Google Scholar]
  11. Faden A. I., Demediuk P., Panter S. S., Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989 May 19;244(4906):798–800. doi: 10.1126/science.2567056. [DOI] [PubMed] [Google Scholar]
  12. Feeney D. M., Gonzalez A., Law W. A. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982 Aug 27;217(4562):855–857. doi: 10.1126/science.7100929. [DOI] [PubMed] [Google Scholar]
  13. Fineman I., Hovda D. A., Smith M., Yoshino A., Becker D. P. Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res. 1993 Oct 8;624(1-2):94–102. doi: 10.1016/0006-8993(93)90064-t. [DOI] [PubMed] [Google Scholar]
  14. Hamakubo T., Kannagi R., Murachi T., Matus A. Distribution of calpains I and II in rat brain. J Neurosci. 1986 Nov;6(11):3103–3111. doi: 10.1523/JNEUROSCI.06-11-03103.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hicks R. R., Smith D. H., Gennarelli T. A., McIntosh T. Kynurenate is neuroprotective following experimental brain injury in the rat. Brain Res. 1994 Aug 29;655(1-2):91–96. doi: 10.1016/0006-8993(94)91601-2. [DOI] [PubMed] [Google Scholar]
  16. Hicks R. R., Smith D. H., Lowenstein D. H., Saint Marie R., McIntosh T. K. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993 Winter;10(4):405–414. doi: 10.1089/neu.1993.10.405. [DOI] [PubMed] [Google Scholar]
  17. Hicks R. R., Smith D. H., McIntosh T. K. Temporal response and effects of excitatory amino acid antagonism on microtubule-associated protein 2 immunoreactivity following experimental brain injury in rats. Brain Res. 1995 Apr 24;678(1-2):151–160. doi: 10.1016/0006-8993(95)00179-t. [DOI] [PubMed] [Google Scholar]
  18. Hong S. C., Goto Y., Lanzino G., Soleau S., Kassell N. F., Lee K. S. Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke. 1994 Mar;25(3):663–669. doi: 10.1161/01.str.25.3.663. [DOI] [PubMed] [Google Scholar]
  19. Inuzuka T., Tamura A., Sato S., Kirino T., Toyoshima I., Miyatake T. Suppressive effect of E-64c on ischemic degradation of cerebral proteins following occlusion of the middle cerebral artery in rats. Brain Res. 1990 Aug 27;526(1):177–179. doi: 10.1016/0006-8993(90)90269-h. [DOI] [PubMed] [Google Scholar]
  20. Iwasaki Y., Yamamoto H., Iizuka H., Yamamoto T., Konno H. Suppression of neurofilament degradation by protease inhibitors in experimental spinal cord injury. Brain Res. 1987 Mar 17;406(1-2):99–104. doi: 10.1016/0006-8993(87)90773-6. [DOI] [PubMed] [Google Scholar]
  21. Johnson G. V., Litersky J. M., Jope R. S. Degradation of microtubule-associated protein 2 and brain spectrin by calpain: a comparative study. J Neurochem. 1991 May;56(5):1630–1638. doi: 10.1111/j.1471-4159.1991.tb02061.x. [DOI] [PubMed] [Google Scholar]
  22. Kamakura K., Ishiura S., Suzuki K., Sugita H., Toyokura Y. Calcium-activated neutral protease in the peripheral nerve, which requires microM order Ca2+, and its effect on the neurofilament triplet. J Neurosci Res. 1985;13(3):391–403. doi: 10.1002/jnr.490130306. [DOI] [PubMed] [Google Scholar]
  23. Katayama Y., Becker D. P., Tamura T., Hovda D. A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990 Dec;73(6):889–900. doi: 10.3171/jns.1990.73.6.0889. [DOI] [PubMed] [Google Scholar]
  24. Lee K. S., Frank S., Vanderklish P., Arai A., Lynch G. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7233–7237. doi: 10.1073/pnas.88.16.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lowenstein D. H., Thomas M. J., Smith D. H., McIntosh T. K. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci. 1992 Dec;12(12):4846–4853. doi: 10.1523/JNEUROSCI.12-12-04846.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lynch G., Baudry M. The biochemistry of memory: a new and specific hypothesis. Science. 1984 Jun 8;224(4653):1057–1063. doi: 10.1126/science.6144182. [DOI] [PubMed] [Google Scholar]
  27. McIntosh T. K. Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev. 1994 Summer;6(2):109–162. [PubMed] [Google Scholar]
  28. McIntosh T. K., Vink R., Noble L., Yamakami I., Fernyak S., Soares H., Faden A. L. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience. 1989;28(1):233–244. doi: 10.1016/0306-4522(89)90247-9. [DOI] [PubMed] [Google Scholar]
  29. Mellgren R. L. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett. 1980 Jan 1;109(1):129–133. doi: 10.1016/0014-5793(80)81326-3. [DOI] [PubMed] [Google Scholar]
  30. Nilsson P., Hillered L., Olsson Y., Sheardown M. J., Hansen A. J. Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab. 1993 Mar;13(2):183–192. doi: 10.1038/jcbfm.1993.22. [DOI] [PubMed] [Google Scholar]
  31. Nilsson P., Hillered L., Pontén U., Ungerstedt U. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab. 1990 Sep;10(5):631–637. doi: 10.1038/jcbfm.1990.115. [DOI] [PubMed] [Google Scholar]
  32. Okiyama K., Smith D. H., Thomas M. J., McIntosh T. K. Evaluation of a novel calcium channel blocker, (S)-emopamil, on regional cerebral edema and neurobehavioral function after experimental brain injury. J Neurosurg. 1992 Oct;77(4):607–615. doi: 10.3171/jns.1992.77.4.0607. [DOI] [PubMed] [Google Scholar]
  33. Palmer A. M., Marion D. W., Botscheller M. L., Swedlow P. E., Styren S. D., DeKosky S. T. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993 Dec;61(6):2015–2024. doi: 10.1111/j.1471-4159.1993.tb07437.x. [DOI] [PubMed] [Google Scholar]
  34. Perlmutter L. S., Siman R., Gall C., Seubert P., Baudry M., Lynch G. The ultrastructural localization of calcium-activated protease "calpain" in rat brain. Synapse. 1988;2(1):79–88. doi: 10.1002/syn.890020111. [DOI] [PubMed] [Google Scholar]
  35. Posmantur R., Hayes R. L., Dixon C. E., Taft W. C. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma. 1994 Oct;11(5):533–545. doi: 10.1089/neu.1994.11.533. [DOI] [PubMed] [Google Scholar]
  36. Povlishock J. T. Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol. 1992 Jan;2(1):1–12. [PubMed] [Google Scholar]
  37. Rami A., Krieglstein J. Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res. 1993 Apr 23;609(1-2):67–70. doi: 10.1016/0006-8993(93)90856-i. [DOI] [PubMed] [Google Scholar]
  38. Roberts-Lewis J. M., Savage M. J., Marcy V. R., Pinsker L. R., Siman R. Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci. 1994 Jun;14(6):3934–3944. doi: 10.1523/JNEUROSCI.14-06-03934.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
  40. Shapira Y., Yadid G., Cotev S., Shohami E. Accumulation of calcium in the brain following head trauma. Neurol Res. 1989 Sep;11(3):169–172. doi: 10.1080/01616412.1989.11739885. [DOI] [PubMed] [Google Scholar]
  41. Siesjö B. K., Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab. 1989 Apr;9(2):127–140. doi: 10.1038/jcbfm.1989.20. [DOI] [PubMed] [Google Scholar]
  42. Siman R., Baudry M., Lynch G. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3572–3576. doi: 10.1073/pnas.81.11.3572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Siman R., Noszek J. C., Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci. 1989 May;9(5):1579–1590. doi: 10.1523/JNEUROSCI.09-05-01579.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smith D. H., Lowenstein D. H., Gennarelli T. A., McIntosh T. K. Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neurosci Lett. 1994 Feb 28;168(1-2):151–154. doi: 10.1016/0304-3940(94)90438-3. [DOI] [PubMed] [Google Scholar]
  45. Smith D. H., Okiyama K., Thomas M. J., Claussen B., McIntosh T. K. Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma. 1991 Winter;8(4):259–269. doi: 10.1089/neu.1991.8.259. [DOI] [PubMed] [Google Scholar]
  46. Smith D. H., Okiyama K., Thomas M. J., McIntosh T. K. Effects of the excitatory amino acid receptor antagonists kynurenate and indole-2-carboxylic acid on behavioral and neurochemical outcome following experimental brain injury. J Neurosci. 1993 Dec;13(12):5383–5392. doi: 10.1523/JNEUROSCI.13-12-05383.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Soares H. D., Thomas M., Cloherty K., McIntosh T. K. Development of prolonged focal cerebral edema and regional cation changes following experimental brain injury in the rat. J Neurochem. 1992 May;58(5):1845–1852. doi: 10.1111/j.1471-4159.1992.tb10061.x. [DOI] [PubMed] [Google Scholar]
  48. Taft W. C., Yang K., Dixon C. E., Hayes R. L. Microtubule-associated protein 2 levels decrease in hippocampus following traumatic brain injury. J Neurotrauma. 1992 Fall;9(3):281–290. doi: 10.1089/neu.1992.9.281. [DOI] [PubMed] [Google Scholar]
  49. Toulmond S., Duval D., Serrano A., Scatton B., Benavides J. Biochemical and histological alterations induced by fluid percussion brain injury in the rat. Brain Res. 1993 Aug 20;620(1):24–31. doi: 10.1016/0006-8993(93)90266-p. [DOI] [PubMed] [Google Scholar]
  50. Wang K. K., Yuen P. W. Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci. 1994 Nov;15(11):412–419. doi: 10.1016/0165-6147(94)90090-6. [DOI] [PubMed] [Google Scholar]
  51. Young W. Ca paradox in neural injury: a hypothesis. Cent Nerv Syst Trauma. 1986 Summer;3(3):235–251. doi: 10.1089/cns.1986.3.235. [DOI] [PubMed] [Google Scholar]
  52. Young W. Role of calcium in central nervous system injuries. J Neurotrauma. 1992 Mar;9 (Suppl 1):S9–25. [PubMed] [Google Scholar]
  53. Zola-Morgan S. M., Squire L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990 Oct 12;250(4978):288–290. doi: 10.1126/science.2218534. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES