Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1969 Sep;44(9):1291–1294. doi: 10.1104/pp.44.9.1291

Polyribosome Isolation in the Presence of Diethyl Pyrocarbonate 1

Donald P Weeks a, A Marcus a
PMCID: PMC396258  PMID: 5379107

Abstract

Isolation of polyribosomes from wheat embryos and corn root tips in the presence of diethyl pyrocarbonate showed this reagent to have a protective effect on polyribosome structure. In addition, the use of diethyl pyrocarbonate allowed initial homogenization to be performed under less stringent conditions than those normally employed for polyribosome isolation. The use of the reagent is however limited, in that it is deleterious to in vitro ribosomal amino acid incorporation.

Full text

PDF
1291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLARK M. F., MATTHEWS R. E., RALPH R. K. RIBOSOMES AND POLYRIBOSOMES IN BRASSICA PEKINENSIS. Biochim Biophys Acta. 1964 Oct 16;91:289–304. doi: 10.1016/0926-6550(64)90253-1. [DOI] [PubMed] [Google Scholar]
  2. Cameron H. J., Julian G. R. The effect of chloramphenicol on the polysome formation of starved stringent Escherichia coli. Biochim Biophys Acta. 1968 Dec 17;169(2):373–380. doi: 10.1016/0005-2787(68)90045-2. [DOI] [PubMed] [Google Scholar]
  3. Colombo B., Vesco C., Baglioni C. Role of ribosomal subunits in protein synthesis in mammalian cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):651–658. doi: 10.1073/pnas.61.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fedorcsák I., Ehrenberg L. Effects of diethyl pyrocarbonate and methyl methanesulfonate on nucleic acids and nucleases. Acta Chem Scand. 1966;20(1):107–112. doi: 10.3891/acta.chem.scand.20-0107. [DOI] [PubMed] [Google Scholar]
  5. Hsiao T. C. Ribonuclease Activity Associated With Ribosomes of Zea mays. Plant Physiol. 1968 Sep;43(9):1355–1361. doi: 10.1104/pp.43.9.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. JOHNSTON F. B., STERN H. Mass isolation of viable wheat embryos. Nature. 1957 Jan 19;179(4551):160–161. doi: 10.1038/179160b0. [DOI] [PubMed] [Google Scholar]
  7. Kaempfer R. Ribosomal subunit exchange during protein synthesis. Proc Natl Acad Sci U S A. 1968 Sep;61(1):106–113. doi: 10.1073/pnas.61.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leaver C. J., Key J. L. Polyribosome formation and RNA synthesis during aging of carrot-root tissue. Proc Natl Acad Sci U S A. 1967 May;57(5):1338–1344. doi: 10.1073/pnas.57.5.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin C. Y., Key J. L., Bracker C. E. Association of D-RNA with Polyribosomes in the Soybean Root. Plant Physiol. 1966 Jun;41(6):976–982. doi: 10.1104/pp.41.6.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lin C. Y., Key J. L. Dissocation and reassembly of polyribosomes in relation to protein synthesis in the soybean root. J Mol Biol. 1967 Jun 14;26(2):237–247. doi: 10.1016/0022-2836(67)90294-x. [DOI] [PubMed] [Google Scholar]
  11. Marcus A., Feeley J., Volcani T. Protein Synthesis in Imbibed Seeds III. Kinetics of Amino Acid Incorporation Ribosome Activation, and Polysome Formation. Plant Physiol. 1966 Sep;41(7):1167–1172. doi: 10.1104/pp.41.7.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marcus A., Luginbill B., Feeley J. Polysome formation with tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1243–1250. doi: 10.1073/pnas.59.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ochoa S. Translation of the genetic message. Naturwissenschaften. 1968 Nov;55(11):505–514. doi: 10.1007/BF00660121. [DOI] [PubMed] [Google Scholar]
  14. Rosén C. G., Fedorcsák I. Studies on the action of diethyl pyrocarbonate on proteins. Biochim Biophys Acta. 1966 Dec 28;130(2):401–405. doi: 10.1016/0304-4165(66)90236-4. [DOI] [PubMed] [Google Scholar]
  15. Solymosy F., Fedorcsák I., Gulyás A., Farkas G. L., Ehrenberg L. A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissues. Eur J Biochem. 1968 Sep 24;5(4):520–527. doi: 10.1111/j.1432-1033.1968.tb00401.x. [DOI] [PubMed] [Google Scholar]
  16. Subramanian A. R., Ron E. Z., Davis B. D. A factor required for ribosome dissociation in Escherichia coli. Proc Natl Acad Sci U S A. 1968 Oct;61(2):761–767. doi: 10.1073/pnas.61.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tester C. F., Dure L., 3rd Selective precipitation of monomeric ribosomes by bentonite. Biochem Biophys Res Commun. 1966 May 3;23(3):287–293. doi: 10.1016/0006-291x(66)90543-2. [DOI] [PubMed] [Google Scholar]
  18. Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. I. Partial fractionation of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles. J Mol Biol. 1968 Jun 28;34(3):575–593. doi: 10.1016/0022-2836(68)90182-4. [DOI] [PubMed] [Google Scholar]
  19. Van Huystee R. B., Jachymczyk W., Tester C. F., Cherry J. H. X-irradiation effects on protein synthesis and synthesis of messenger ribonucleic acid from peanut cotyledons. J Biol Chem. 1968 May 10;243(9):2315–2320. [PubMed] [Google Scholar]
  20. Waters L. C., Dure L. S., 3rd Ribonucleic acid synthesis in germinating cotton seeds. J Mol Biol. 1966 Aug;19(1):1–27. doi: 10.1016/s0022-2836(66)80046-3. [DOI] [PubMed] [Google Scholar]
  21. Watts R. L., Mathias A. P. The use of bentonite in the isolation of plant polyribosomes. Biochim Biophys Acta. 1967;145(3):828–831. doi: 10.1016/0005-2787(67)90142-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES