Abstract
The activity of pectin esterase and cellulase in abscission of citrus explants was studied. No relation was established between pectin esterase and abscission, while cellulase activity was markedly increased before abscission and for a certain period after excision. IAA and cycloheximide delay abscission and cellulase activity, while ethylene and, to a lesser extent, GA3 accelerate them. Application of cycloheximide during the lag period and before cellulase activity can be measured, inhibits to a certain extent the formation of cellulase. An escape from the inhibitory effect of cycloheximide is detected when inhibitor is supplied at the end of the lag period.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles F. B. Abscission: role of cellulase. Plant Physiol. 1969 Mar;44(3):447–452. doi: 10.1104/pp.44.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B. Role of RNA and protein synthesis in abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1577–1586. [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B., Rubinstein B. Regulation of Ethylene Evolution and Leaf Abscission by Auxin. Plant Physiol. 1964 Nov;39(6):963–969. doi: 10.1104/pp.39.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DICKINSON D. B., MCCOLLUM J. P. CELLULASE IN TOMATO FRUITS. Nature. 1964 Aug 1;203:525–526. doi: 10.1038/203525a0. [DOI] [PubMed] [Google Scholar]
- Dela Fuente R. K., Leopold A. C. Senescence processes in leaf abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1496–1502. [PMC free article] [PubMed] [Google Scholar]
- ISHERWOOD F. A., JERMYN M. A. Changes in the cell wall of the pear during ripening. Biochem J. 1956 Sep;64(1):123–132. doi: 10.1042/bj0640123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis L. N., Bakhshi J. C. Interactions of indoleacetic Acid and gibberellic Acid in leaf abscission control. Plant Physiol. 1968 Mar;43(3):351–358. doi: 10.1104/pp.43.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis L. N., Bakhshi J. C. Protein synthesis in abscission: the distinctiveness of the abscission zone and its response to gibberellic Acid and indoleacetic Acid. Plant Physiol. 1968 Mar;43(3):359–364. doi: 10.1104/pp.43.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riov J., Monselise S. P., Kahan R. S. Ethylene-controlled Induction of Phenylalanine Ammonia-lyase in Citrus Fruit Peel. Plant Physiol. 1969 May;44(5):631–635. doi: 10.1104/pp.44.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIEGEL M. R., SISLER H. D. SITE OF ACTION OF CYCLOHEXIMIDE IN CELLS OF SACCHAROMYCES PASTORIANUS. I. EFFECT OF THE ANTIBIOTIC ON CELLULAR METABOLISM. Biochim Biophys Acta. 1964 May 18;87:70–82. doi: 10.1016/0926-6550(64)90048-9. [DOI] [PubMed] [Google Scholar]
- Stahmann M. A., Clare B. G., Woodbury W. Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue. Plant Physiol. 1966 Nov;41(9):1505–1512. doi: 10.1104/pp.41.9.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steponkus P. L., Lanphear F. O. The Role of Light in Cold Acclimation of Hedera helix L. var. Thorndale. Plant Physiol. 1968 Feb;43(2):151–156. doi: 10.1104/pp.43.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner H. L., Leopold A. C. Ethylene evolution from 2-chloroethylphosphonic Acid. Plant Physiol. 1969 Jan;44(1):156–158. doi: 10.1104/pp.44.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yager R. E. Possible Role of Pectic Enzymes in Abscission. Plant Physiol. 1960 Mar;35(2):157–162. doi: 10.1104/pp.35.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]